التطبيق العملي لطريقة الانحدار الخطي البسيط:

جمعت بيانات لـ 20 عائلة عشوائيا لمعرفة العلاقة بين استهلاك ودخول تلك الأسرة .

X^2	XY	الإستهلاك Y	الدخل X	رقم العائلة
8100	8100	90	90	1
6400	4800	60	80	2
3600	2700	45	60	3
4225	4550	70	65	4
900	900	30	30	5
1225	1575	40	35	6
1600	2000	50	40	7
4900	3850	55	70	8
9025	8075	85	95	9
4900	5250	75	70	10
6400	7200	90	80	11
5625	5250	70	75	12
2500	3000	60	50	13
900	1200	40	30	14
625	625	25	25	15
4900	4550	65	70	16
3600	3600	60	60	17
2025	2250	50	45	18
625	875	35	25	19
400	700	35	20	20
72475	71050	1130	115	الجموع

أُولاً: الوسط الحسابي للدخل = 55.75، والوسط الحسابي للإستهلاك = 56.50

ثانيا: حساب معاملات الانحدار الخطي

$$0.764 = \frac{71050 - 20(55.75)(56.50)}{72475 - 20(3108.063)} = \hat{\beta}$$
 حساب قیمة

 $13.919=56.50-0.764\times55.75=\hat{\alpha}$ حساب قیمة

ثالثًا: حساب جودة التقدير (معامل التحديد)

$$\%83 \cong 0.8298 = \frac{6020.25}{7255} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} , R^{2} = \frac{ESS}{TSS}$$

إذا فالدخل مسئول عن 83% في التغير بالمتغير المستقل وهي نسبة كبيرة، وبالإستعانة بالبرنامج الإحصائي MINITAB تحصلنا على مايلي :

Regression Analysis

Consump = 13.9 + 0.764 Income

Predictor Coef Stdev t-ratio p

Constant 13.919 4.916 2.83 0.011

Income 0.76379 0.08167 9.35 0.000

s = 8.294 R-sq = 82.9% R-sq(adj) = 82.0%

قاعدة اتخاذ القرار

إذا كانت قيمة
$$t$$
 المحسوبة t عند t عند درجة ثقة معينة أكبر من القيمة الجدولية فهذا يعني إذا كانت قيمة t

أن المتغير المستقل المدرج في المعادلة معنويا إحصائيا ،كما يشير الرمز p الى درجة الإحتمال التي تُرفض عندها فرضية العدم. فلو فرضنا أن القيمة أكبر من 0.05 فهذا يعني قبول فرضية العدم وأن المتغير المستقل غير معنوي إحصائيا.

لاحظ أن إحصائية t المحسوبة في المثال للمتغير المستقل (2.83) أكبر من القيمة الجدولية المستخرجة من جداول t عند درجة ثقة 95% و 12 درجة حرية وتساوي 1.72 ثما يعني أن المتغير المستقل إحصائيا معنويا وهذا دليل على أن المتغير المستقل لا يمكن إهماله في تفسير ظاهرة الإستهلاك، كما أن إحصائية t اصغر من t وبالتالي رفض فرضية العدم.

رابعاً: التنبؤ بقيمة

بعد تقدير النموذج يمكن التنبؤ مباشرة بالتعويض في النموذج المقدر والحصول على قيمة المتغير المستقل في الفترة خارج العينة (مثال التنبؤ باستهلاك أسرة إذا كان دخلها 55)

$$\hat{Y}_{21} = 13.919 + 0.764(55) = 55.94$$