

مجلة

التنميــة والسياسات الاقتصادية

المجلد (24) - العدد (2) (ISSN - 1561 - 0411) (يوليو 2022) (دورية محكمة معنية بدراسات السياسات الاقتصادية – نصف سنوية)

سمغونى توفيق المحروقات في الجزائر: دراسة قياسية. زقای ذیاب

> محمد دحماني دنیا کرزابی منال عطوشي

هل يؤثر سعر النفط على معدل التضخم في الْجِز آثر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك.

والمتوسطة على النمو الاقتصادي

برامج تأهيل المؤسسات الصغيرة

خارج

خضر العكارى

مونيا بطاح عبدالجواد إزرارى محمد مورجي

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام تموذج التقلب العشوائي البيزي.

تأثير إصلاحات الضريبة على القيمة المضافة على استُهلاك الأسر ألَّ عُربيةً: تُحليل بالمحاكاة ا الجزئية من خلال نموذج (2014-2001) QUAIDS.

سحر عبود

دور السياسات في تحفيز الطاقة المتجددة في البلدان العربية.

مجلة التنمية والسياسات الاقتصادية

Journal of Economic and Development Policies

التعريف بالمحلة

مجلة علمية فصلية محكمة تصدر عن المعهد العربي للتخطيط. وتعنى بنشر البحوث النظرية والميدانية في مجال علم الاقتصاد وسياسات التنمية الاقتصادية، بالإضافة إلى عروض الكتب والتقارير، ومتابعة الندوات والمؤتمرات وفعاليات العلمية المرتبطة بعلم الاقتصاد.

About the Journal

A scientific journal published bi-annually by the Arab Planning Institute. The journal publishes theoretical and field research in economic policy development, in addition to book reports, seminar and conferences proceedings and events related to the field of economics.

الأهداف

- تختص المجلة بالدراسات المرتبطة بقضايا التنمية والسياسات الاقتصادية في الدول العربية على وجه الخصوص في ضوء المتغيرات المحلية والإقليمية والدولية.
- تزويد صانعي القرار والممارسين والباحثين في الدول العربية بأحدث نتائج الدراسات التنموية في المجال الاقتصادي.
 - خلق حوار علمى بناء بين الباحثين والمهتمين بالاقتصادات العربية وصناع القرار بالمنطقة.

Goals

- The Journal is specialized with studies related to development issues and economic policies in Arab countries.
- Provide policy makers and researchers in the Arab word with the latest research results and recommendation in development and economic fields.
- Creating a constructive scientific dialogue between all stakeholders interested in the economic policy of the Arab world.

Publication Guidelines

- The journal publishes original research and studies (Arabic and English) that have not been previously published and were not submitted publication in other journals or periodicals.
- Studies submitted to the journal may not exceed 30 pages or 10000 words, including figures, illustrations, tables, references, and appendices.
- Book and Report reviews must not exceed 10 pages and review recent books/reports that were published through certified publishers.
- Submissions to the journal should be addressed to the Editor on the following email address: jodep@api.org.kw taking in account the following points:
 - Margins in all directions should be 2.5 cm
 Research Tittle should be written
 - between quotation marks (i.e "Title")
 Title should be in font size 16 Bold and the title must be accurate and expressive
 - of the content of the search.
 Font size (12 \ Simplified Arabic) for Arabic texts and (10 \ Time New Roman) for English texts.
 - The research shall be accompanied by two abstracts, in Arabic and English, of no more than 300 words each. And the.
 The research should contain the name of the researcher (researchers). e-mail
 - address and current position.

 The journal uses the (American Psychological Association APA) reference system
 - Six key words relative to the research must be added under the abstracts in both Arabic and English.
 - At least 3 classifications in accordance with the American Economic Classifications must be added to the paper
- The peer review process is conducted in two stages using the blind review method, as follows:
 - Internal blind review to ensure that the research paper is in line with the journal's requirements (the researcher will be notified within a week)
 - External blind peer review in which the research is reviewed to two referees (the researcher is answered within a month after the initial review, and in case the research is accepted by a reviewer and is rejected by the other. A third reviewer determines the validity of the research)
- All opinions expressed in the research papers are those of the authors and do not express the opinion of the journal or the Arab Planning Institute.

قواعد النشر

- تنشر المجلة الأبحاث والدراسات الأصيلة (باللغتين العربية والإنجليزية) والتي لم يتم نشرها سابقاً ولم تكن مقدمة للنشر في مجلات أو دوريات أخرى.
- تكون الأوراق العلمية والدراسات المقدمة بحجم لا يتجاوز الد 30 صفحة وألا يتجاوز عدد الكلمات 10000 كلمة، بما فيها الأشكال والرسوم والملاحق.
- مراجعة الكتب والتقارير لا تزيد على الـ 10 صفحات على أن تتناول كتب من ضمن مواضيع المجلة وصدرت حديثاً عن دور نشر معروفة.
- تقدم البحوث والدراسات ومراجعات الكتب والتقارير إلى رئيس التحرير، على البريد الإلكتروني للمجلة jodep@api.org.kw بالمواصفات التالية:
 - تكون الهوامش من كافة الاتجاهات 2.5 سم.
- يكتب عنوان البحث بين علامتين تنصيص هكذا " --
- يكتب العنوان بخط حجم 16 مع Bold ويجب أن يكون العنوان دقيقاً ومعبّراً عن محتوى البحث.
- حجم الخط (Simplified Arabic \ 12) للنصوص العربية و (Time New Roman \10) للنصوص الانجليزية.
- يرفق مع البحث ملخصان، باللغتين العربية والإنجليزية، بما لا يزيد على 300 كلمة لكل منهما.
- أن يحتوي البحث على اسم الباحث (الباحثين) وعنوان جهة العمل والمسمى الوظيفي للباحث وعنوان البريد الالكتروني.
- التوثيق: تعتمد المجلة نظام (Psychological Association APA) للنشر العلمي.
- يرفق مع البحث ما لا يزيد عن 6 كلمات مفتاحية، وتكون باللغتين العربية والإنجليزية.
- . يرفق مع البحث ما لا يزيد عن 3 رموز حسب تصنيف الكلمات المفتاحية للجمعية الأمريكية للاقتصاد JEL . . Classification
- تتم عملية التحكيم على مرحلتين باستخدام أسلوب التحكيم المعمى وذلك على النحو التالي:
- تحكيم داخلي للتأكد من مطابقة قواعد النشر للمجلة (يتم الرد على الباحث خلال أسبوع)
- تحكيم خارجي بحيث يتم عرض البحث على محكمين (يتم الرد على الباحث خلال شهر بعد التحكيم الأولي وفي حال تم قبول البحث من قبل محكم ورفضه من قبل المحكم الآخر يعرض على محكم ثالث للفصل بمدى صلاحية البحث).
- جميع الآراء الواردة في المجلة تعبر عن كتابها، ولا تعبر بالضرورة عن وجهة نظر المجلة أو المعهد العربي للتخطيط.

مجلة التنمية والسياسات الاقتصادية

تصدر عن المعهد العربي للتخطيط بالكويت

المجلد الرابع والعشرون - العدد الثاني - يوليو 2022

مجلة محكمة نصف سنوية تهتم بقضايا التنمية والسياسات الاقتصادية في الأقطار العربية

الهيئة الاستشارية

حازم الببلاوي

أستاذ الاقتصاد - الرئيس الأسبق لمجلس الوزراء في جمهورية مصر العربية - المدير التنفيذي الأسبق لصندوق النقد الدولي

سُليمان القدسي أستاذ وخبير اقتصادي - لبنان

سمير المقدسي أستاذ الاقتصاد في الجامعية الأمريكية ببيروت - لبنان

عُبدالله القَويز خبير اقتصادي - الأمين العام المساعدُ الأسبق للشؤونُ ٱلاقتصادية في منظمة مجلس التعاون

الخليجي - السعُودية عبد اللطيف الحمد

رئيس مجلس إدارة الصندوق العربي للإنماء الاقتصادي والاجتماعي السابق - الكويت مصطفى النابلي مصطفى النابلي أستاذ الاقتصاد - كبير اقتصادِينِ البنك الدولي لمنطقة الشرق الأوسط وشمال

أفريقيا سابقا - تُونَس

ريساض المومني

أستاذ الاقتصاد - نائب رئيس جامعة اليرموك - الأردن

هبئة التحرير

أشرف العربي أشرف العربي أستاذ الاقتصاد - رئيس معهد التخطيط القومي في جمهورية مصر العربية بلقاسم العباس

أستاذ الاقتصاد القياسي وكبير مستشاري المعهد العربي للتخطيط - الجزائر ايهاب مقابله

أستاذ الاقتصاد ورئيس المركز الإقليمني للمشاريع الصغيرة والمتوسطة - الأردن فُلصل المناور

أستاذ السياسات العامة - الكويت منى الشرقاوي

أستاذ الاقتصاد - جامعة محمد الخامس - المغرب

معز العبيدي

أستاذ الاقتصاد - جامعة المنستير - تونس

رئيس التحرير

د. بدر عثمان مال الله مدير عام - المعهد العربي للتخطيط

نائب رئيس التحرير

أ.د. وليد عبدمولاه وكيل - المعهد العربي للتخطيط

سكرتير التحرير

آ. شريفه حماده باحث في الجهاز الفني المعهد العربي للتخطيط

توجه المراسلات إلى:

رئيس التحرير - مجلة التنمية والسياسات الاقتصادية المعهد العربي للتخطيط ص.ب 5834 - الصفاة 13059 الكويت تلفون 24842935 - 24843130 (965) – فاكس 24842935 (965) البريد الالكتروني jodep@api.org.kw

قائمة تصنيف بحوث العدد

التصنيف Code	لغة البحث Papers's Language	عنوان البحث Paper Tittle
اقتصاد Economics	عربي Arabic	تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الجزائر: دراسة قياسية The Impact of the Upgrading Programs of Small and Medium-Sized Enterprises on Non-Hydrocarbon Economic Growth in Algeria: An Econometric Study
اقتصاد Economics	عربي Arabic	هل يؤثر سعر النفط على معدل التضخم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL و MAKI للتكامل المشترك Does Oil Price Affect the Inflation Rate in Algeria? A New Insight Based on NARDL and MAKI Cointegration Test
ا قتصاد Economics	عربي Arabic	قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيزي Measuring Economic Policy Uncertainty in Syria Using Bayesian Stochastic Volatility Model
ا قتصاد Economics	ا نجلیزي English	Impact of VAT Reforms on Moroccan Household's Food Consumption: Microsimulation Analyses Through the QUAIDS Model (2001 -2014) تأثير إصلاحات الضريبة على القيمة المضافة على استهلاك الأسر QUAIDS المغربية: تحليل بالمحاكاة الجزئية من خلال نموذج QUAIDS
ا قتصاد Economics	ا نجلیزي English	Role of Policies in Stimulating Renewable Energy in Arab Countries دور السياسات في تحفيز الطاقة المتجددة في البلدان العربية

المحتويات العربية

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الجزائر: دراسة قياسية.

سمغوني توفيق زقاي ذياب

هل يؤثر سعر النفط على معدل التضخم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL و MAKI للتكامل المشترك.

محمد دحماني دنيا كرزابي منال عطوشي

27

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيزي.

خضر العكاري

افتتاحية العدد

يأتي العدد الثاني من المجلد الرابع والعشرين لمجلة التنمية والسياسات الاقتصادية التي يصدرها المعهد العربي للتخطيط مشتملًا على خمسة بحوث باللغتين العربية والانجليزية عالجت عدد من القضايا التنموية المُلحة على المستويين الوطني والإقليمي، حيث تضمن العدد ثلاثة بحوث باللغة العربية، وبحثين باللغة الإنجليزية.

استُهل العدد ببحث من إعداد سمغوني توفيق، وزقاي ذياب بعنوان "تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الجزائر: دراسة قياسية"، حيث هدفت هذه الدراسة إلى قياس أثر برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الأجلين القصير والطويل في الاقتصاد الجزائري خلال الفترة 2002-2017، من خلال استخدام نموذج الانحدار الذاتي ذو التأجيل الزمني الموزع ARDL. وتوصل الباحثان إلى وجود علاقة طويلة الأجل بين المتغيرات، وأن هناك علاقة ذات دلالة إحصائية إيجابية في المدى الطويل لبرامج التأهيل والتوظيف على النمو الاقتصادي خارج المحروقات، وعلاقة سلبية معنوية طويلة المدى بين مدركات الفساد والنمو الاقتصادي خارج المحروقات.

وجاء البحث الثاني من إعداد محمد دحماني، ودنيا كرزابي، ومنال عطوشى تحت عنوان "هل يؤثر سعر النفط على معدل التضخم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL و NAKD للتكامل المشترك"، حيث استخدم الباحثون نموذج الانحدار الذاتي الخطي (المتماثل) الموزع المتأخر ARDL ونموذج الهلا غير الخطي (غير المتماثل)، بالإضافة لاختيار التكامل المشترك له (2012) MAKI لفحص التأثيرات المتماثلة وغير المتماثلة لتغيرات أسعار النفط على معدل التضخم في الجزائر. وتوصل الباحثون إلى أن وقوع صدمة موجبة في أسعار النفط بمقدار 1% تؤدي إلى ارتفاع معدل التضخم بنسبة أن وقوع صدمة موجبة في أسعار النفطية السالبة بمقدار 1% فتُخفّض معدل التضخم بنسبة 10.18%، وعليه فقد أوصى البحث بأن على السلطات النقدية أن تتبنى السياسات المناسبة لاستيعاب الصدمات النفطية وذلك لتفادي أي آثار تضخمية.

أما البحث الثالث ضمن هذا العدد فقد أعده خضر العكاري، وجاء تحت عنوان "قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيزي"، استهدف الباحث تقديم إطار لقياس عدم التأكد في السياسة الاقتصادية في سورية وفق منهج النقلب العشوائي، على اعتبار أن عدم التأكد عامل كامن يقود التقلبات المشتركة

والخاصة لمجموعة من المتغيرات الاقتصادية والمالية، وذلك باستخدام نموذج Bayesian والخاصة لمجموعة من المتغيرات الاقتصادية والمالية في حالة عدم التأكد في السياسة الاقتصادية خلال الفترات المقابلة للأحداث الاقتصادية والسياسية في سورية، بما يعكس عدم وضوح السياسة الاقتصادية من قبل المصرف المركزي وصانعي السياسات، وبالتالي صعوبة معرفة وتوقع اتجاه التطور الاقتصادي خلال الفترة المقبلة.

وفي البحث الرابع من هذا العدد الذي أعده مونيا بطاح، وعبد الجواد إزراري، ومحمد مورجي، تحت عنوان "تأثير إصلاحات الضريبة على القيمة المضافة على استهلاك الأسر المغربية: تحليل بالمحاكاة الجزئية من خلال نموذج QUAIDS (2001–2014)"، حيث استهدف هذا البحث تحديد كيفية تأثير ترتيبات الضرائب غير المباشرة، لا سيما الضريبة على القيمة المضافة، على هيكل استهلاك مختلف طبقات الأسر المغربية. ولتحقيق ذلك قام الباحثون بتطبيق نظام الطلب التربيعي شبه المثالي (QUAIDS) باستعمال بيانات المسح الوطني لاستهلاك وإنفاق الأسر المغربية لسنوات 2002/2001 و 2014/2013 وذلك سعياً لتقدير مرونة الطلب لثماني مجموعات غذائية من طرف مختلف طبقات الأسر. وقد توصل الباحثون إلى عدد من النتائج منها ميل الأسر المغربية إلى تقليل استهلاكها من الخضار والمنتجات الغنية بالسعرات الحرارية (السكريات والحبوب) لصالح زيادة استهلاكها لمنتجات مثل الفواكه والأطعمة الغنية بالبروتينات (اللحوم والأسماك والدهون والحليب ومشتقاته).

وجاء البحث الخامس من العدد تحت عنوان "دور السياسات في تحفيز الطاقة المتجددة في البلدان العربية" من إعداد سحر عبود، الذي استهدف تحليل دور السياسات كأحد المحددات الأساسية للاستثمار في الطاقة المتجددة في أحد عشر بلدًا عربيًا باستخدام السلاسل الزمنية المقطعية للفترة 2010–2019، وذلك لتحديد المجالات التي من شأن تدخل السياسات فيها أن يشجع الاستثمار في الطاقة المتجددة في البلدان العربية. وقد أظهر التحليل تباين جهود الدول العربية فيما يتعلق بتهيئة البيئة الداعمة لاستثمارات الطاقة المتجددة كما أظهر أن كافة البلدان العربية قد شهدت تحسّنًا في هذا الصدد. وفي الأخير، أكدت النتائج أهمية السياسات في تحفيز الاستثمار في الطاقة المتجددة في البلدان العربية سواء على مستوى المؤشر الإجمالي للسياسات أو مكوناته الفرعية.

رئيس التحرير

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الجزائر: دراسة قياسية سمغوني توفيق*

ملخص

الهدف من هذه الورقة البحثية هو قياس أثر برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الأجلين القصير والطويل في الاقتصاد الجزائري خلال الفترة 2002 – 2017، باستعمال نموذج الانحدار الذاتي ذو التأجيل الزمني الموزع ARDL، إن النتائج المستخرجة من اختبار Bounds تؤكد وجود علاقة طويلة الأجل بين المتغيرات، كما تبين من خلال نتائج تقدير نموذج تصحيح الخطأ ECM أن سرعة التعديل من الأجل القصير إلى الأجل الطويل بلغت حوالي 54% سداسيا، أظهرت النتائج التي تم الحصول عليها بأن هناك علاقة ذات دلالة إحصائية إيجابية في المدى الطويل لبرنامج التأهيل والتوظيف على النمو الاقتصادي خارج المحروقات، وعلاقة سلبية معنوية طويلة المدى بين مدركات الفساد والنمو الاقتصادي خارج المحروقات.

The Impact of the Upgrading Programs of Small and Medium-Sized Enterprises on Non-Hydrocarbon Economic Growth in Algeria: An Econometric Study

Semghouni Toufik Zeggai Diab

Abstract

The purpose of this research paper is to measure the impact of upgrading programs of small and medium-sized enterprises on non-hydrocarbon economic growth in the short and long term in the Algerian economy during the period 2002-2017. Using the autoregressive distributed lag (ARDL) model. The results based on the bounds testing procedure confirm that a long-run relationship exists between among variables; The ARDL error correction model indicates that the speed of adjustment is about 54% half-yearly. The obtained results showed that there is a significant positive long run relationship between upgrading programs and Employment on non-hydrocarbon economic growth, and a significant Negative long run relationship between Corruption Perception and non-hydrocarbon economic growth.

^{*} كلية العلوم الاقتصادية والعلوم التجارية وعلوم التسيير، جامعة الدكتور طاهر مولاي، سعيدة (الجزائر). البريد الالكتروني: semghounidoc@gmail.com

^{**} كلية العلوم الاقتصادية والعلوم التجارية وعلوم التسيير، جامعة الدكتور طاهر مولاي، سعيدة (الجزائر).

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج الحروقات في الجزائر: دراسة قياسية

1. مقدمة

تلعب المؤسسات الصغيرة والمتوسطة دورا هاما في تحقيق النمو الاقتصادي وتوفير مناصب الشغل وترقية الصادرات خارج المحروقات، إضافة إلى مرونتها وقدرتها على التكيف مع مختلف المتغيرات، وإدراكا للدور الفعال الذي يمكن أن يقوم به قطاع المؤسسات الصغيرة والمتوسطة، شرعت الجزائر منذ سنة 2001 في تبني مجموعة من البرامج التنموية تهدف من خلالها لإنعاش النمو في جميع المجالات وتحقيق التنمية، ولعل من أبرزها برامج تأهيل المؤسسات الصغيرة والمتوسطة من جوانب مالية وبشرية وتكنولوجية، قصد تحضير وتكييف هذه الأخيرة لجعلها قادرة على مواكبة تغيرات السوق والتطورات التقنية، من خلال تحسين ودعم قدرتها التنافسية وإكسابها لعناصر التسيير الراشد باعتماد التقييس والابتكار التكنولوجي والارتقاء بالإنتاج الوطني إلى آفاق معايير الجودة العالمية، فضلا عن دعم ترقية الصادرات خارج المحروقات.

تسعى الدراسة الحالية إلى قياس أثر العلاقة ما بين برامج التأهيل والنمو الاقتصادي خارج المحروقات في الجزائر، بغية توضيح هذا الأثر قمنا بدراسة قياسية باستخدام نموذج الانحدار الذاتي ذو التأجيل الزمني الموزع ARDL بالاعتماد على بيانات زمنية سداسية من 2002 إلى 2017.

مما سبق ذكره تتجلى لنا معالم الإشكالية التي سوف نحاول الإجابة عنها من خلال هذه الدراسة والتي يمكن صياغتها في التساؤل الرئيسي التالي: كيف تؤثر برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي بالجزائر خارج قطاع المحروقات خلال الفترة 2002-2017؟

ومن هذا المنطلق واستنادا إلى مشكلة الدراسة الحالية، نطرح الفرضيات التالية:

- هنالك علاقة معنوية موجبة بين برامج تأهيل المؤسسات والنمو الاقتصادي خارج المحروقات على المدى الطويل والقصير بالنسبة للاقتصاد الجزائري.
- وجود علاقة توازنية قصيرة وطويلة الأجل تتجه من متغيرات (معدل التشغيل، مؤشر مدركات الفساد وخلق مؤسسات جديدة) نحو النمو الاقتصادي خارج المحروقات).

2. أهداف الدراسة

تسعى الدراسة للوصول للأهداف التالية:

- التعرف على مدى فعالية برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات.
- 2. محاولة نمذجة العلاقة ما بين برامج التأهيل المؤسسات الصغيرة والمتوسطة والنمو الاقتصادي خارج المحروقات، واختبار هذه العلاقة باستخدام الانحدار الذاتي ذو التأجيل الزمني الموزع ARDL.

3. عرض الأدبيات

دراسة (LAMIA YACOUB,2008) ، والتي تهدف إلى تقديم تقييم لمدى فعالية برامج التأهيل باعتبارها وسيلة رئيسية للسياسة الصناعية التونسية الحالية، وقد تم جمع البيانات اللازمة للدراسة من خلال استبانة تم توزيعها على عينة من الشركات الصناعية التونسية التي استكملت بالفعل خطة التأهيل والبالغ عددها (104)، أظهرت النتائج بأن هنالك تأثيرات إيجابية، في حين بلغ معدل الفعالية العام بنسبة للأهداف (تطور الإنتاجية، خلق فرص العمل، تحسين القدرة التنافسية) 55.77%.

كذلك دراسة (Lamia AZOUAOU,2009)، هدفت إلى تبيان هندسة برامج التأهيل في دول المغرب العربي ومدى الاختلاف في الهياكل وأدوار الحكومات التي يمكن أن تفسر إلى حد كبير الفروق الملحوظة في تقدم تنفيذ هذه البرامج، وكذا من حيث نتائج هذه الأخيرة، وخلصت الدراسة إلى القيام بمقارنة مرجعية لبرامج التأهيل المختلفة في بلدان المغرب العربي سواء في التنفيذ أو في النتائج، بحيث نجد بأن أفضلها تونس والمغرب ثم تأتي الجزائر رغم مساهمتها في خلق فرص عمل والقيمة وهو ما يتطلب بدل جهد أكبر لتعزيز التنافسية الاقتصادية، واقترحت الباحثة بالعمل على نطاق إقليمي لدعم المؤسسات للحصول على أفضل النتائج.

أيضا دراسة (GHOMARI, S & BERRACHED, W, 2014)، حاولت عرض مختلف تجارب تأهيل المؤسسات في منطقة الشرق الأوسط وشمال أفريقيا MENA ونخص بالذكر كل من الجزائر، وتونس، والمغرب ومصر. تم ذلك بإبراز كيفية إقدام كل دولة على تبنى استراتيجية برنامج التأهيل، كما تم التعرض إلى الإحصائيات المتعلقة بالمبالغ المرصودة

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المروقات في الجزائر: دراسة قياسية

لعملية التأهيل ومساهمات المنظمات المرافقة للارتقاء بالقدرة التنافسية للمؤسسات في سياق بيئة تنافسية بشكل متزايد، توصلت الدراسة إلى نجاح برنامج الترقية التونسي إلى حد كبير نتيجة مشاركة الحكومة والأهمية التي تعطى للتدريب المهني، أيضا بالنسبة للبرنامج المصري الذي يعتبر أكثر تنظيما من خلال تحكم الحكومة وتدخل الاتحاد الأوروبي مع منظمة الأمم المتحدة للتنمية الصناعية UNIDO، على العكس من ذلك بطء برنامج التأهيل المغربي بالتركيز على مشاكل السوق.

أما دراسة (AMINE MOKHEFI & ALL, 2014) ، تهدف إلى تحليل العلاقة بين برنامج التأهيل وأثره في القدرة التنافسية للمؤسسات من وجهة نظر الخبراء ، أبرزت الدراسة من خلال المعطيات النظرية إلى أن بالرغم من مجموعة البرامج الرامية إلى تأهيل المؤسسات لتحسين القدرة التنافسية ، إلا أنه كانت النتائج عكس الأهداف المرجوة على صعيد المنافسة الخارجية بحيث لم تتعدى نسبة الصادرات خارج المحروقات 03% وعلى صعيد الداخلي نسبة نمو الصناعة الوطنية لم تتعدى 30%.

أما دراسة (2014, LUKAS, M & ALL, 2014) ، تهدف إلى قياس مدى تأثير المقاولاتية (ريادة الأعمال) على النمو الاقتصادي الإقليمي، بالنسبة للمقاطعات الكندية خلال الفترة الممتدة من1987 إلى 2007، يستند البحث على منهج كمي باستعمال نماذج قياسية في خطوتين للتقدير، أشارت النتائج إلى أن المقاولاتية المقاسة من خلال معدل التشغيل (العمالة) الذاتي تلعب دورا محوريا في تحديد التنمية الإقليمية في كندا، كذلك أشارت الخطوة الثانية من التقدير باستخدام نموذج ديناميكي VAR بأن تأثيرات النمو الإقليمية على المدى الطويل ناتجة عن صدمات السياسات التي تؤثر على المقاولاتية.

كما تطرقت دراسة (David B. Audretsch & ALL, 2015)، إلى تحليل العلاقة بين إنشاء مؤسسات جديدة والتنمية الاقتصادية الحضرية، باستخدام بانل مكون من 127 مدينة أوروبية خلال الفترة (1994–2009)، تم ذلك بإجراء دراسة قياسية بتحليل آثار خلق مؤسسات جديدة على التنمية الاقتصادية الحضرية المعبر عنها بالناتج المحلي الإجمالي للفرد الواحد، أظهرت النتائج التجريبية بأن هنالك تأثيرات إيجابية مباشرة وغير مباشرة (بالنسبة للمدن الكبيرة) ذات دلالة إحصائية بين خلق المؤسسات (الأعمال) الجديدة وتحسين التنمية الاقتصادية بشكل كبير.

أما دراسة (Abdelaziz H & Helmi H, 2015) ، تهدف إلى تحليل آثار الفساد على الاستثمار والنمو في 15 بلداً في منطقة الشرق الأوسط وشمال أفريقيا (MENA) خلال

سمغوني توفيق، زقاي ذياب

الفترة الممتدة من1985 إلى 2013، وباستخدام مؤشر الفساد الخاص بدليل المخاطر الدولية (ICRG) تم إجراء تحليل التكامل المشترك للبانل واجراء تحليل السببية له الاكتشاف العلاقات الديناميكية بين المتغيرات، أظهرت النتائج الرئيسية لهذه الورقة أن الفساد يشكل عقبة خطيرة أمام النمو الاقتصادي في دول منطقة الشرق الأوسط وشمال أفريقيا، حيث يؤثر على الأنشطة الاستثمارية وتدفقات الاستثمار الأجنبي المباشر.

أما دراسة (Bouchikhi, M & ALL, 2016) ، هدفت إلى تبيان مدى مساهمة المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المحروقات في الجزائر خلال الفترة (2001–2013)، وقد اعتمدت الدراسة على تحليل الانحدار المتعدد، وتوصلت الدراسة إلى أنه رغم كل الجهود المبدولة من طرف الدولة لتنويع قطاع المؤسسات الصغيرة والمتوسطة خارج المحروقات فالنتائج المحققة تعتبر ضعيفة، فضلا عن أن برامج التأهيل واجهت قيود مختلفة، لكن برغم هذا أشارت نتائج الدراسة بأن المؤسسات الصغيرة والمتوسطة هي بمثابة المشغل (المحرك) للنمو الاقتصادي.

أيضا دراسة (Hossein, A & ALL, 2017)، تهدف إلى إظهار كيف يؤثر متغير الشفافية على التقدم الاقتصادي، إذ تمت مناقشة العلاقة بين مؤشر إدراك الفساد ورأس المال المادي والقوى العاملة مع النمو الاقتصادي في بلدان الشرق الأوسط (14 دولة) خلال السنوات الد 13 الماضية (2003–2015)، أظهرت نتائج الدراسة أن العلاقة بين الشفافية والنمو الاقتصادي في دول الشرق الأوسط هي علاقة مباشرة وهامة، كما أن العلاقة بين تكوين رأس المال الإجمالي ومشاركة القوة العاملة هي علاقة مباشرة وهامة مع النمو الاقتصادي لهذه البلدان.

أما دراسة (العيد غربي وعبد الوهاب دادن،2017) هدفت إلى إبراز مدى تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على تنافسية الاقتصاد الوطني خلال الفترة (1999–2015)، وقد اعتمدت الدراسة على تحليل بعض تقارير مؤشرات تنافسية الدول ومؤشرات الاقتصاد الكلي، وتوصلت الدراسة إلى أنه رغم كل الجهود المبذولة والبرامج المختلفة لتأهيل المؤسسات الصغيرة والمتوسطة ومحاولات تحسين مناخ الاستثمار وبيئة الأعمال في الجزائر، إلا أنها لم تعطي النتائج المرجوة منها مما جعل أثرها متواضع على رفع تنافسية الاقتصاد الوطني.

بناءً على ما سبق، ومن خلال استعراض الدراسات والبحوث المحلية والعربية والدولية السابقة نجد أن القليل منها حاول الربط بين عملية تأهيل المؤسسات والنمو الاقتصادي خارج

المحروقات، كما اختلفت النتائج باختلاف التجارب الاقتصادية لهذه الدول، إذ نجد بأن معظم الدراسات التجريبية تتفق على قياس أثر برامج التأهيل على أداء المؤسسات أو على القدرة التنافسية، في حين نجد أيضا بعض الدراسات التي ارتكزت على توضيح إشكالية تأهيل المؤسسات الصغيرة والمتوسطة وتوضيح تجارب تأهيل المؤسسات في منطقة الشرق الأوسط وشمال أفريقيا MENA، أما بخصوص الشق الثاني من الدراسة والمتمثل في المتغير التابع (النمو الاقتصادي خارج المحروقات) أكدت الكثير من الدراسات السابقة بوجود العديد من المحددات التي تؤثر فيه من بينها متغير الشفافية وآثار الفساد مثل دراسة كل من المحددات التي تؤثر فيه من بينها متغير الشفافية وآثار الفساد مثل دراسة كل من (Hakimi & Hamdi, 2015) فقد بينت أن هنالك تأثيرات للمؤسسات (ALL, 2015) فقد بينت أن هنالك تأثيرات للمؤسسات الصغيرة والمتوسطة وخلق مؤسسات جديدة على النمو الاقتصادي وتحسين التنمية على حد الصغيرة والمتوسطة وخلق مؤسسات جديدة على النمو الاقتصادي وتحسين التنمية على حد

4. النموذج والبيانات والنتائج

لرصد العلاقة السببية بين المتغيرات تستخدم هذه الدراسة نموذج الانحدار الذاتي ذو التأجيل الزمني الموزع ARDL الذي وضعه (1995) (Pesaran and Shin (1995) الذي وضعه (Pesaran (1997) أو Pesaran (1997) أو (Pesaran (1997) عندما تكون السلاسل الزمنية متكاملة عند كل من المستوى يمكن تطبيق هذا الاختبار عندما تكون السلاسل الزمنية متكاملة من درجة أعلى من (1) المعنى أن السلاسل الزمنية لنموذج الدراسة تحتوي على متغيرات مستقرة من الدرجة الصفر والدرجة الأولى، في حين أن لو حصلنا على متغيرات متكاملة من الدرجة الأولى ففي هذه الحالة نلجأ إلى تطبيق التكامل المشترك مثل اختبار (1987) (1988) والمعتمد في هذه الدراسة، تم اختيار المعتمد الدراسة بما ينسجم مع النظرية الاقتصادية والدراسات السابقة، من خلال بيانات ملاسل زمنية سداسية للفترة الممتدة من 2002 إلى 2017 ويرجع اختيار هذه الفترة لتوفر برامج التأهيل، كذلك قمنا بأخذ الشكل اللوغاريتمي الطبيعي للمتغير التابع (الناتج الداخلي الخام خارج المحروقات) للحصول على أفضل النتائج مقارنة بالدالة الأصلية، بحيث شكل الدالة هو:

LPIBHH= F(NESPMN, CPME, TEMP, CPI)

تم الاستعانة بقواعد بيانات كل من وزارة الصناعة والمناجم، والديوان الوطني للإحصائيات ONS وبيانات منظمة الشفافية الدولية. والجدول رقم (1) يوضح ذلك.

5. اختبار استقرارية السلاسل الزمنية

قبل إجراء عملية التقدير يجب اختبار إستقرار السلاسل الزمنية لمتغيرات الدراسة لمعرفة درجة تكاملها ولتجنب بعض المشاكل القياسية والانحدار الزائف (R.Bourbonnais, 2009)See Engle & Granger أمكانية رفض فرضية العدم ($H_0=B=0$) من عدمه عند المستوى 5%، ويلاحظ من خلال الجدول رقم (2) و (3) أن النتائج وفق اختبار فيلبس (PP) لم تختلف كثيرا عما كانت عليه في اختبار (ADF)، إذ لا يمكن رفض فرضية العدم أي أن جل السلاسل تحتوي على جذر الوحدة وبالتالي فهي غير مستقرة، ماعدا سلسلة متغير خلق مؤسسات صغيرة ومتوسطة جديدة (CPME) فهي مستقرة عند المستوى ($H_0=B=0$) وقد تبين بأنها استقرت عند مستوى معنوية حديد (CPME) وقد تبين بأنها استقرت عند مستوى معنوية حديد.

6. اختبار ARDL Bounds التكامل المشترك

لاختبار وجود علاقة طويلة الأجل بين متغيرات الدراسة أستخدم منهج الحدود للتكامل المشترك استنادا على نموذج الانحدار الذاتي ذو التأجيل الزمني الموزع. ويتم الاعتماد على اختبار F-statistics للفرضية التالية:

$$H_0: \theta_1 = \theta_2 = \theta_3 = \theta_4 = 0$$

$$H_1: \theta_1 \neq 0; \ \theta_2 \neq 0; \ \theta_3 \neq 0; \ \theta_4 \neq 0$$

يلاحظ من خلال الجدول رقم (4) أن قيمة إحصائية التكامل المشترك المحسوبة بلغت F=9.95 وهي أكبر من الحد العلوي للقيمة الحرجة عند مختلف درجات المعنوية (1%، 5%، 10%) المقترحة من قبل (Pesaran and al 2001) ، والموضحة في الجدول، وبالتالي نرفض فرضية العدم ونقبل الفرضية البديلة بوجود علاقة توازنية طويلة الأجل تتجه من جملة المتغيرات التفسيرية نحو المتغير التابع، مما يؤكد صحة فرضيات الدراسة.

7. تقدير نموذج الأجل الطويل ومعلمة تصحيح الخطأ

بعد التأكد من وجود علاقة توازنية طويلة الأجل وفق منهجية اختبار الحدود عند مختلف درجات المعنوية (1%، 5%، 10%)، قمنا بقياس العلاقة طويلة الأمد في إطار نموذج ARDL، حيث تم تقدير العلاقة طويلة الأجل باختبار معنوية معالم المتغيرات المفسرة على المدى الطويل، أظهرت نتائج تجارب المحاكات لبرنامج EVIEWS 10 بأن نموذج على المدى الطويل، أفهرت نتائج الأمثل المختار وفقا لمعيار (AIC)، إذ نلاحظ من نتائج الجدول رقم (5) بأن هنالك استجابة طويلة الأمد طردية ومعنوية بين عدد المؤسسات الخاضعة لبرامج التأهيل ومعدل التشغيل على النمو الاقتصادي خارج المحروقات في الأجل الطويل، فضلا عن وجود تأثير سلبي معنوي لمدركات الفساد على النمو الاقتصادي خارج المحروقات في الأجل الطويل.

كذلك تشير النتائج في الجدول رقم (6)، بأن هناك علاقة ديناميكية قصيرة الأجل بين النمو الاقتصادي خارج المحروقات وبين المتغيرات المفسرة، إذ تظهر إشارة معلمة تصحيح الخطأ سلبية والبالغة (0.535) ومعنوية إحصائيا عند مستوى (1%)، مما يقودنا للتأكيد على استنتاج علاقة التكامل المشترك كما تشير أيضا إلى سرعة التعديل من الأجل القصير إلى الأجل الطويل ما نسبته 54% كل ستة أشهر، فضلا عن ارتفاع قيمة معامل التحديد المعدل (Adjusted (0.98)) التي توضح أن النموذج المقدر يفسر (0.98)) من التغيرات الحاصلة في المتغير التابع.

8. اختبارات جودة تقدير النموذج القياسى

بعد أن تأكدنا من مدى صلاحية النموذج من الناحية الاقتصادية والإحصائية، سنقوم باختباره من الناحية القياسية لمعرفة مدى انسجامه وخلوه من المشاكل القياسية، إذ يستلزم إجراء الاختبارات التشخيصية التالية:

1.8 اختبار فحص بواقي النموذج

للتحقق من صحة النموذج المقدر وسلامته من المشاكل القياسية المختلفة لتحليل السلاسل الزمنية، تم إجراء الاختبارات التشخيصية بفحص بواقي النموذج والنتائج مدونة في الجدول رقم (7) والشكل رقم (1):

- نلاحظ من خلال قيمة إحصائية (Jarque-Bera) والتي بلغت (3.974) بقيمة احتمالية (P=0.137)، أي تحقق شرط التوزيع الطبيعي للأخطاء العشوائية في النموذج المقدر.
- إن النموذج لا يعاني من مشكلة الارتباط الذاتي التسلسلي وذلك من خلال القيمة الإحصائية لاختبار (BGLM) التي أظهرت عدم معنوية هذا الاختبار بقيمة احتمالية. (P=0.490)
- إن القيمة الإحصائية لـ (Test ARCH) بلغت (0.009) عند مستوى احتمال (P=0.926)، وهذا يعني قبول فرضية العدم التي مفاداها ثبات حد الخطأ العشوائي في النموذج المقدر.
- تشير قيمة إحصائية (F) المحتسبة لاختبار (Ramsey-RESET) والتي بلغت (0.290) بقيمة احتمالية (P=0.686)، وهذا يعني قبول فرضية العدم التي مفاداها صحة الشكل الدالي المستخدم في النموذج.

(Test de stabilité) اختبار استقرار النموذج

بعد تقدير صيغة تصحيح الخطأ لنموذج (ARDL)، و كمرحلة أخيرة سنقوم باختبار الاستقرار الهيكلي لمعاملات الأجلين القصير والطويل، ولتحقيق ذلك سوف يتم استخدام اختبارين هما (Brown et al., 1975) المجموع التراكمي للبواقي المعاودة (CUSUMSQ) للتأكد من خلو البيانات واختبار المجموع التراكمي لمربعات البواقي المعاودة (Cusumsq) للتأكد من خلال الشكل المستخدمة في هذه الدراسة من وجود أي تغيرات هيكلية فيها، إذ نلاحظ من خلال الشكل رقم (2)، أنه لا يوجد تغير هيكلي فالنموذج مستقر في مجمله بحيث أن الرسم البياني لإحصائيات (Cusum &cusumsq) تقعان داخل الحدود الحرجة (الحد الأعلى والحد الأدنى) عند مستوى معنوية إحصائية (5%)، وعليه فإن المعاملات المقدرة للنموذج مستقرة هيكليا خلال الفترة الزمنية محل للدراسة، مما يدل على وجود انسجام واستقرار بين نتائج الأجل القصير للنموذج المقدر.

9. اختبار دقة النموذج التنبؤي

بعد التأكد من خلو البيانات المستخدمة في الدراسة من وجود أي تغيرات هيكلية فيها، نستخدم معامل عدم التساوي لثايل (Theil)، للتأكد من أن النموذج المقترح يتمتع بقدرة

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المروقات في الجزائر: دراسة قياسية

جيدة على التنبؤ خلال مدة الدراسة، إذ تشير نتائج الاختبار في الشكل رقم (3) أن قيمة ثايل جيدة على التنبؤ خلال مدة الدراسة، إذ تشير نتائج الاختبار في القيمة المعيارية لثايل Theil inequality coefficient وهي (الصفر) في حين بلغت نسبة التغاير (CP) قيمة (0.999) وهي قريبة من الواحد الصحيح، وعليه يكون للنموذج مقدرة عالية على التنبؤ.

10. الخلاصة

تسعى الجزائر بانتهاجها لسياسات الإصلاح إلى تحقيق نمو اقتصادي خارج قطاع المحروقات، ومنه كان توجه السلطات في الجزائر نحو دعم قطاع المؤسسات الصغيرة والمتوسطة كبديل واعد لقطاع المحروقات من خلال برامج التأهيل والمصاحبة لهذه المؤسسات بهدف تحسين محيط الاستثمار، وكذلك من خلال الشراكة الدولية لتمويل إنشاء مؤسسات جديدة بهدف توفير مناصب شغل. وضمن هذا الإطار، استهدفت هذه الدراسة قياس وتحليل أثر تأهيل المؤسسات على النمو الاقتصادي خارج المحروقات في الأجلين القصير والطويل للاقتصاد الجزائري خلال الفترة الممتدة من 2002 إلى 2017.

بينت نتائج الدراسة القياسية تحقق صفة الاستقرارية (السكون) عند الفرق الأول لجل متغيرات النموذج عدا متغير خلق مؤسسات صغيرة ومتوسطة جديدة الذي استقر عند المستوى وفق اختبارات كل من (PP, ADF)، مما استوجب استخدام التكامل المشترك وفق منهجية الانحدار الذاتي للفترات الزمنية الموزعة (ARDL)، حيث أشارت نتائج التقدير لاختبار (BoundsTest) إلى وجود علاقة توازنية طويلة الأجل (تكامل مشترك) تتجه من المتغيرات التفسيرية نحو المتغير التابع (النمو الاقتصادي خارج المحروقات) عند مستوى معنوية (5%). إضافة إلى ذلك، تبين لنا وجود أثر موجب ومعنوي في الأجل الطويل لكل من متغير عدد المؤسسات الخاضعة لبرامج التأهيل (NESPMN) و متغير معدل التشغيل (CPI) على النمو الاقتصادي، أما فيما يتعلق بمتغير مؤشر مدركات الفساد (CPI) ظهرت نتائج التقدير أثر سالب ومعنوي لهذا المتغير، في حين نجد متغير خلق مؤسسات طغيرة ومتوسطة جديدة (CPME) غير معنوي، كذلك أوضحت قيمة معامل تصحيح الخطأ قيمة سلبية والبالغة (-5.535) عند مستوى معنوية إحصائية (1%)، ومن ناحية أخرى قيمة سلبية والبالغة (-5.535) عند مستوى معنوية إحصائية (1%)، ومن ناحية أخرى القصير والطويل باستخدام اختبار (CUSUMSQ) وCUSUM)، كما أثبتت النتائج أن النموذج يتمتع بقدرة عالية على التنبؤ وفق معامل ثايل Theil inequality coefficient.

المراجع العربية

العيد غربي وعبد الوهاب دادن، (2017) ، أثر تأهيل المؤسسات الصغيرة والمتوسطة على تنافسية الاقتصاد الوطني خلال الفترة 1999–2015، مجلة رؤى اقتصادية، العدد 12، ص 211–237.

المراجع الأجنبية

Amine, M., Ali, K., Mohamed, L. (2014). «La mise à niveau des pme Algériennes : un levier de compétitivité des entreprises ». Algerian Business Performance Review, UNIV Ouargla, No 06, 63-76.

Bouchikhi, M & ALL. (2016). La contribution des PME à la croissance économique hors hydrocarbures en Algérie, maghreb review of economics and management, Vol.3, No.1, PP. 157-168.

Brown, R. L., Durbin, J. & Evans, J. M. (1975). «Techniques for testing the constancy of regression relationships overtime ». Journal of the Royal Statistical Society, 37, 149–192.

David B. Audretsch & ALL. (2015). «Entrepreneurship and economic development in cities». The Annals of Regional Science, 1-28.

Engle, R. F., & Granger, C. W. J. (1987). «Co-integration and error correction: Representation, estimation and testing». Econometrica, 55, 251–276.

Ghomari, S. M, & Berrached, W. B. (2014). «Upgrade in the Mena region: cases of Algeria, Egypt, Morocco and Tunisia ». Journal perspectives of innovations, economics & business, Volume 14, Issue 2, 61-68.

Hakimi, A., Hamdi, H. (2015). «How Corruption Affect Growth in MENA Region? Fresh Evidence from a Panel Cointegration Analysis», Faculty of Law, Economics and Management of Jendouba, Tunisia, AixMarseille University CERGAM (4525), France, pp. 1-21.

Hossein, A & ALL. (2017), «Impact of Economic Transparency on Economic Growth in the Middle East countries ». International Journal of Business and Development Studies Vol. 9, No. 2, (2017) pp 115-138.

Johansen, S., (1988). «Statistical Analysis of Cointegrating Vectors », Journal of Economic Dynamics and Control, Vol. 12, pp. 231–54.

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المروقات في الجرائر: دراسة قياسية

Lamia, A (2009). «La compétitivité et la mise a niveau des PME maghrébines : analyse a partir d'une approche multidimensionnelle». Revue de l'économie et de management. N°09. October 2009.

Lamia, Y. (2008). «Le programme de mise à niveau de l'industrie un moyen efficace de la politique industrielle tunisienne? ». Cahiers du lab.rII, N203, 01-40.

Matejovski, L., Mohapatra, S. & Steiner, B. (2014). «The Dynamic Effects of Entrepreneurship on Regional Economic Growth: Evidence from Canada». Growth and Change 45(4): 611–639.

Pesaran, H.M. (1997). «The Role of Economic Theory in Modelling the Long-run», Economic Journal, 107: 178-191.

Pesaran, H.M. and Shin, Y. (1995). «Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis », DAE Working Paper Series No. 9514, Department of Applied Economics, University of Cambridge.

Pesaran, M. H., Shin, Y., &Smith, R. J. (2001). « Bounds testing approaches to the analysis of level relationships ». Journal of Applied Economics, 16, 289–326.

R.BOURBONNAIS. (2009). Économétrie. 7ème édition. Dunod. Paris.

سمغوني توفيق، زقاي ذياب

ملاحق الجدول رقم (1): متغيرات الدراسة

المصدر	اسم السلسلة (المتغير)	الرمز
نشرية المعلومات الإحصائية الخاصة	-12 11 1- 1-11 1-1-11 11 1- 1	LPIBHH
بوزارة الصناعة	لوغاريتم المنتوج الداخلي الخام خارج المحروقات	LPIBHH
نشرية المعلومات الإحصائية الخاصة	عدد المؤسسات ص و م الخاضعة للتأهيل	NESPMN
بوزارة الصناعة	عدد الموسسات ص و م الحاصعة للناهين	NESPININ
بيانات الديوان الوطني للإحصائيات	ele ti la le aeti te	TEMP
ONS	معدل التشغيل في الجزائر	TEMP
نشرية المعلومات الإحصائية الخاصة		СРМЕ
بوزارة الصناعة	خلق مؤسسات صغيرة ومتوسطة جديدة	CFINE
بيانات منظمة الشفافية الدولية	مؤشر مدركات الفساد في الجزائر	СРІ

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج الحروقات في الجزائر: دراسة قياسية

الجدول رقم (2): نتائج اختبار جدر الوحدة للاستقرارية عند المستوى

7		ند المستوى PP	c		عند المستوى ADF			
درجة التكامل	بدون ثابث واتجاه	ثابث واتجاه	ثابث	بدون ثابث واتجاه	ثابث واتجاه	ثابث	المتغيرات	
,	8.6421	-0.3853	-1.4860	9.7973	-0.2819	-1.5126	LPIBHH	
/	(1.0000)	(0.9837)	(0.5273)	(1.0000)	(0.9876)	(0.5141)	LFIBRIT	
,	2.1529	-1.3703	0.6061	-0.4989	-2.9668	-1.3749	NESPMN	
/	(0.9909)	(0.8498)	(0.9876)	(0.4913)	(0.1586)	(0.5805)	NESPIVIN	
,	1.2322	-1.0107	-1.7979	1.2151	-1.0992	-1.7701	TEMP	
/	(0.9409)	(0.9279)	(0.3746)	(0.9391)	(0.9130)	(0.3877)	I EIVIP	
T (0)	-1.8145	-4.6511	-4.3804	-1.0172	-4.7137	-4.3325	CNPME	
I (0)	*(0.0667)	***(0.0043)	***(0.0017)	(0.2706)	***(0.0037)	***(0.0019)	CNFWE	
,	0.6775	-1.9262	-1.7010	0.6669	-4.6875	-1.7010	СРІ	
/	(0.8566)	(0.6153)	(0.4202)	(0.8544)	***(0.0053)	(0.4202)	CPI	

سمغوني توفيق، زقاي ذياب

الجدول رقم (3): نتائج اختبار جدر الوحدة للاستقرارية عند الفرق الأول

7	عند الفرق الأول PP			عند الفرق الأول ADF			
درجة التكامل	بدون ثابث وإتجاه	ثابث واتجاه	ثاب	بدون ثابث وإتجاه	ثابث واتجاه	ثابث	المتغيرات
I (1)	-1.7249	-5.2234	-4.9621	-1.0754	-5.2219	-4.9287	LPIBHH
I (1)	*(0.080)	***(0.001)	***(0.0000)	(0.001)	***(0.001)	***(0.0000)	LPIDHH
	-5.8337	-7.0020	-6.5273	-1.7417	-2.199	-2.2201	
I (1)	***(0.0000)	***(0.0000)	***(0.0000)	*(0.077)	(0.4710)	(0.2041)	NESPMN
T (1)	-5.4349	-6.2886	-5.7976	-5.4039	-6.2141	-5.7981	TEMP
I (1)	***(0.0000)	***(0.0000)	***(0.000)	***(0.0000)	***(0.0000)	***(0.0000)	I EIVIP
T (0)	-21.565	-25.677	-24.428	-9.4475	-9.1572	-9.3171	CNPME
I (0)	***(0.0000)	***(0.0000)	***(0.0000)	***(0.0000)	***(0.0000)	***(0.0000)	CINFINE
T (1)	-5.1962	-5.2822	-5.2377	-5.1962	-5.2805	-5.2377	СРІ
I (1)	***(0.0000)	***(0.001)	***(0.0000)	***(0.0000)	***(0.001)	***(0.000)	CPI

تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج الحروقات في الجزائر: دراسة قياسية

الجدول (4): نتائج إختبار الحدود Bounds Test

		Critical bounds			
Test Statistic	Value	critical value			
		Signif.	I (0)	I (1)	
F-statistic	9.95	10%	2.2	3.09	
k	4	5%	2.56	3.49	
		1%	3.29	4.37	

المصدر: إعداد الباحثان، من نتائج التحليل الإحصائي لبرنامج Eviews 10.

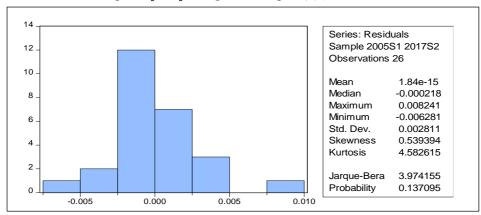
الجدول رقم (5): نتائج تقدير معلمات الأجل الطويل

	Dependent Variable: DLOG (PIBHH)						
	Selected N	Model: ARDL (4,	4, 3, 4, 4)				
	Date:]	17/07/18 Time:	: 02:15				
	Sam	ple: 2002S1 201	17 S 2				
	Inclu	ded observations	s: 26				
Variable	Coefficient	Coefficient Std. Error t-Statistic Prob.					
NESPMN	0.001	0.000	7.500	0.017			
CPME	0.000	0.000 0.000 -2.523 0.128					
TEMP	TEMP 0.079 0.008 9.598 0.011						
CPI	-0.164 0.036 -4.613 0.044						
С	16.721	0.742	22.539	0.002			

سمغوني توفيق، زقاي ذياب

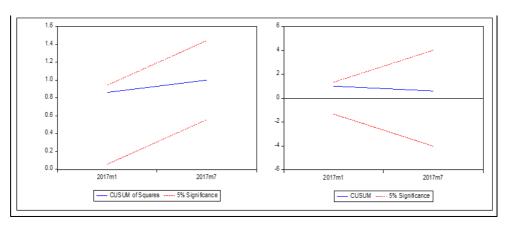
الجدول رقم (6): نتائج تقدير نموذج تصحيح الخطأ

ECM Regression					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(LPIBHH(-1))	0.53854	0.036303	14.83462	0.0045	
D(LPIBHH(-2))	0.497905	0.055597	8.955568	0.0122	
D(LPIBHH(-3))	0.665214	0.047151	14.10815	0.005	
D(NESPMN)	0.000251	2.79E-05	8.974048	0.0122	
D(NESPMN(-1))	-0.000248	1.83E-05	-13.57336	0.0054	
D(NESPMN(-2))	0.000381	2.83E-05	13.45084	0.0055	
D(NESPMN(-3))	0.000537	3.36E-05	15.96647	0.0039	
D(CPME)	-2.68E-07	8.56E-08	-3.129271	0.0887	
D(CPME(-1))	2.14E-06	1.79E-07	11.98715	0.0069	
D(CPME(-2))	1.33E-06	1.42E-07	9.360157	0.0112	
D(TEMP)	0.036799	0.002541	14.48054	0.0047	
D(TEMP(-1))	-0.007052	0.000913	-7.726084	0.0163	
D(TEMP(-2))	-0.006526	0.000794	-8.222658	0.0145	
D(TEMP(-3))	0.002527	0.000846	2.986747	0.0962	
D(CPI)	-0.0069	0.00158	-4.366277	0.0487	
D(CPI(-1))	0.077146	0.005476	14.08873	0.005	
D(CPI(-2))	0.018944	0.001574	12.03626	0.0068	
D(CPI(-3))	0.022152	0.001744	12.69871	0.0061	
CointEq(-1)*	-0.535017	0.037009	-14.45656	0.0048	
R-squared	0.989158	Mean d	lependent var	0.053782	
Adjusted R-squared	0.961279	S.D. dependent var		0.026997	
S.E. of regression	0.005312	Akaike info criterion		-7.488214	
Sum squared resid	0.000198	Schwarz criterion		-6.568836	
Log likelihood	116.3468	Hannan-Quinn criter.		-7.223466	
Durbin-Watson stat	2.691849				


المصدر: إعداد الباحثان، من نتائج التحليل الإحصائي لبرنامج Eviews 10.

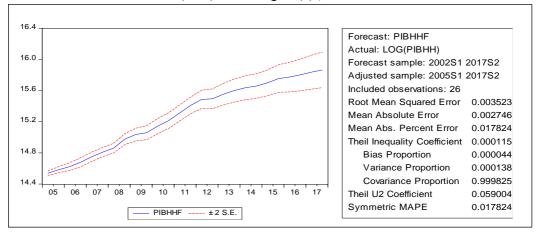
الجدول رقم (7): نتائج اختبارات فحص بواقي النموذج

Statistiques	Valeur estimée	Probabilité
Breusch-Godfrey Serial Correlation LM Test:	1.062	0.490
Test ARCH	0.009	0.926
Le test spécification de Ramsey	0.290	0.686


تأثير برامج تأهيل المؤسسات الصغيرة والمتوسطة على النمو الاقتصادي خارج المروقات في الجزائر: دراسة قياسية

الشكل رقم (1): نتائج اختبار التوزيع الطبيعي لبواقي النموذج

المصدر: إعداد الباحثان، من نتائج التحليل الإحصائي لبرنامج Eviews 10.


الشكل رقم (2): نتائج اختبارات استقرار النموذج

المصدر: إعداد الباحثان، من نتائج التحليل الإحصائي لبرنامج Eviews 10.

سمغونی توفیق، زقای ذیاب

الشكل رقم (3): نتائج اختبار ثايل (Theil)

المصدر: إعداد الباحثان، من نتائج التحليل الإحصائي لبرنامج Eviews 10.

مجلة التنمية والسياسات الاقتصادية، المجلد الرابع والعشرون — العدد الثاني — (2022) 27 - 62 المعهد العربي للتخطيط

هل يؤثر سعر النفط على معدل التضخم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL للتكامل المشترك

محمد دحماني دنيا كرزابي منال عطوشي

ملخص

تستخدم هذه الورقة البحثية نموذج الانحدار الذاتي الخطي (المتماثل) الموزع المتأخر (ARDL) ، ونموذج الـ NARDL غير الخطي (غير المتماثل)، بالإضافة لاختبار التكامل المشترك لـ (2012) MAKI فحص التأثيرات المتماثلة وغير المتماثلة لتغيرات أسعار النفط على معدل التضخم في الجزائر. يتم إدخال عدم التماثل في المدى القصير والمدى الطويل من خلال التحليلات الجزئية الموجبة والسالبة لأسعار النفط بمقدار 1% تؤدي إلى الموجبة والسالبة لأسعار النفط بمقدار 1% تؤدي إلى ارتفاع معدل التضخم بنسبة 0.18%، أما حدوث الصدمة النفطية السالبة بـ 1% فتخفض معدل التضخم بمقدار 40.0%، وبالتالي على السلطات النقدية أن تتبنى السياسات المناسبة لاستيعاب الصدمات النفطية تفاديا لأي أثار تضخمية.

Does Oil Price Affect the Inflation Rate in Algeria? A New Insight Based on NARDL and MAKI Cointegration Test

Mohammed Dahmani Dounia Kerzabi Manel Attouchi

Abstract

This paper employs the linear autoregressive distributed lag (ARDL) model, the asymmetric nonlinear ARDL model, and the MAKI cointegration test to examine the symmetric and asymmetric effects of oil price changes on inflation in Algeria. Short-run and long-run asymmetries are introduced via positive and negative partial sum decompositions of oil price. The long-term results indicated that 1% of positive oil price shock would lead to a rise in the inflation rate by 0.18%, while 1% of negative oil shock reduces the inflation rate by 0.14%. Therefore, the monetary authorities should adopt appropriate policies to absorb oil shocks to avoid any inflationary effects.

^{*} قسم العلوم الاقتصادية، جامعة جيلالي ليابس، سيدي بلعباس، الجزائر، البريد الالكتروني: mohammed.dahmani@univ-sba.dz

^{**} جامعة أبو بكر بلقايد، تلمسان، الجزائر، البريد الالكتروني: douniakerzabi@gmail.com

^{***} المدرسة العليا لإدارة الأعمال، تلمسان، الجزائر، البريد الاكتروني: attouchimanel@gmail.com

هل يؤثر سعر النفط على معدل التضفم في الهزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

1. مقدمة

لا يزال استخدام النفط هو السائد في الاقتصاد العالمي كمصدر غير متجدد للطاقة، ويمكن القول أن هذا يعزى إلى سببين رئيسيين: الأول أنه يمثل أهم المدخلات في جميع الأنشطة الاقتصادية تقريبا كالإنتاج والاستهلاك والنقل وغيرها من الأنشطة؛ ثانيا هو مصدر الطاقة الأرخص نسبيا حيث أن التكاليف الكبيرة غالبا ما ترتبط بشراء وتركيب التكنولوجيا الحديثة للطاقة المتجددة. افترضت وأثبتت التحقيقات والدراسات العلمية صحة أن التغيرات في أسعار النفط سيكون لها تأثير غير مباشر على بعض متغيرات الاقتصاد الكلي مثل التضخم وسعر الفائدة وتطور القطاع المالي والنمو الاقتصادي (& Agboola, 2020 التضخم وسعر الفائدة وتطور القطاع المالي والنمو الاقتصاديات دول العالم وهذا أهم مبرر قد يجعل صدمات أسعار النفط مرتبطة بشكل عام بالاقتصاد الحقيقي، مثل الناتج المحلي وأعمال (Pank (1989) المحلي (Pank (1989)) والأسعار (2018) Abu—Bakar, 2018) والأسعار (Zhao, Lin, et al 2016 ألاهتصاد يتأثر والناتج والعلاقة بين سعر النفط والتضخم. إن انتقال صدمة أسعار النفط عبر الاقتصاد يتأثر بطبيعة الصدمة، على سبيل المثال، الآثار الناجمة عن صدمة أسعار النفط المحلية (المدفوعة بلطلب) لا تشبه الصدمة، على سبيل المثال، الآثار الناجمة عن صدمة أسعار النفط المحلية (المدفوعة بلطلب) لا تشبه الصدمة الخارجية (Shitile & Usman, 2020).

إن أهمية الطاقة في الأنشطة الاقتصادية تدفع بصناع السياسات الاقتصادية للغوص في فهم العلاقة بين أسعار النفط والتضخم. على مر السنين، ولدت هذه العلاقة على ما يبدو نقاش لا ينتهي في المجال الأكاديمي لإظهار مدى مساهمة التغيرات في أسعار النفط للتغير المتزامن في معدّلات التضخم.

إن جميع الأنشطة الاقتصادية تقريبا مرتبطة بشكل مباشر أو غير مباشر بالنفط. بالإضافة لقطاعات التصنيع التي تشارك في استخدامها المباشر، فإن قطاع الخدمات لا Salisu, Afees A., et al (2017) ولقد بين (2017) الاستغناء عن مصدر الطاقة هذه. ولقد بين الاقتصاد، وخاصة بالنسبة للأنشطة أن النفط يحتل مرتبة عالية بين مدخلات الإنتاج في الاقتصاد، وخاصة بالنسبة للأنشطة الاقتصادية بما في ذلك تزويد كل من وسائل النقل الجوي والبري والاستهلاك العائلي كالتدفئة. ومنه، فإن ارتفاع سعر النفط سوف يتبعه ارتفاعا في تكلفة النقل والذي سيتم ربطه أيضا بتكلفة إجمالي الإنتاج، أي لا يترك للمنتجين خيارا منطقيا غير زيادة تكلفة الوحدة من منتوجاتهم (Adekoya & Adebiyi, 2020).

ينتج عن مجموع هذه الزيادة في سعر الوحدة للإنتاج الإضافي ظهور اتجاهات تضخمية. لذلك، غالبا ما يتعين على صانعي السياسات في البلد الإجابة على سؤال رئيسي حول ما إذا كانت التغيرات في أسعار النفط تلعب دورا مهما في الاتجاهات التضخمية لبعض الاقتصادات النفطية والتي منها الجزائر. وإذا كان الجواب بنعم، إلى أي مدى يمكن أن يُعزى هذا التغير في التضخم المحلي إلى التغير في أسعار النفط؟ وهل تؤثر هذه الأخيرة بطريقة متماثلة أم غير متماثلة على مستويات التضخم؟

أكد العديد من الأكاديميين أن ارتفاع مستوى التضخم يمكن أن يكون نتيجة لارتفاع أسعار النفط، فبسبب الزيادة في أسعار النفط، نجد أن تكلفة الإنتاج تزيد وهذا ما يدفّع أصحاب الشركات إلى فرض أسعار مرتفعة لسلعهم. على مر السنين، شهدت الجزائر فترات مختلفة من مستوبات التضخم، ومازالت تكافح ضغوط تقلبات التضخم من جهة وتغيرات أسعار النفط من جهة أخرى. خلال الفترة 1986-1989 وإجهت الجزائر وضعا اقتصاديا صعبا للغاية، بسبب الصدمة النفطية الثانية عام 1986، والتي كان لها تأثير سلبي على جل مؤشرات الاقتصاد الكلي، فانخفضت معدلات الناتج المحلى الإجمالي من 3.7% في عام 1985 إلى -1% في عام 1988، بينما سجل الرقم القياسي لأسعار المستهلك قيما عالية من 08.12% إلى 10.48% بين عامى 1985 و1986. وتميزت مرحلة 1990-1999 بتراجع أسعار النفط الاسمية، حيث وصلت الأسعار إلى أدنى مستوى لها عند 13 دولار خلال سنة 1999. وقد عرفت هذه الفترة ارتفاعا كبيرا في معدلات التضخم. بعدها ارتفعت الأسعار بسرعة لأكثر من الضعف بحلول سبتمبر 2000 فبلغت 35 دولارا، ثم اتجهت إلى الزيادة بشكل مطرد، وبلغت مستوى قياسى فوق 60 دولارا في يونيو 2005، واستمر هذا الاتجاه التصاعدي حتى أوائل يناير 2008، حين بلغ متوسط سعر برميل النفط خلال تلك السنة 94 دولار وفق إحصائية منظمة أوبك. وبالرغم من تراجع الأسعار سنة 2009 بسبب أزمة الرهن العقاري إلا أنه وبداية من سنة 2010 شهدت سوق النفط حالة من التوزان حيث عادت الأسعار للارتفاع مجددا مع استقرار نسبى استمر حتى نهاية 2014. خلال هذه الفترة عرفت أسعار التضخم نوع من الاستقرار بمتوسط قدره 3,5 %. لكن بعد الانخفاض المعتبر في أسعار النفط الاسمية والتي انتقلت من 96 دولارا في عام 2015 إلى 52 دولارا و 42 دولارا في عامي 2016 و 2017 على التوالي، فإن معدلات التضخم ارتفعت من 2% في عام 2014 إلى 6.4% و 5.6% خلال عامي 2016 و 2017 على التوالي (Attouchi, 2021). من خلال هذه الأرقام يمكننا التخمين بأن أسعار النفط في الجزائر قد تؤثر بطريقة غير متماثلة على مستوبات التضخم، هذا ما شجعنا على تطبيق نماذج قياسية غير خطية وحديثة في هذه الدراسة.

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

تم تنظيم بقية الورقة على النحو التالي: يقدم القسم الثاني استعراضا موجزا لأهم الدراسات التطبيقية ذات الصلة بالموضوع؛ يقدم القسم الثالث النماذج المقترحة والنهج التجريبي المتبع. أما القسم الرابع فيناقش البيانات والنتائج المحصل عليها. لتعرض الاستنتاجات وإجراءات السياسة المقترحة في القسم الأخير من هذه الورقة البحثية.

2. مراجعة للدراسات التجريبية حول العلاقة بين أسعار النفط والتضخم

ظلت النقلبات المرتبطة بأسعار النفط وبالأخص ارتفاعها، مسؤولة عن جل التغيير في الأنشطة الاقتصادية، بل إنها تسببت في حدوث كثير من حالات الركود في الاقتصادات المختلفة. هذا من أهم الأسباب التي جعلت من أن التغيرات والتقلبات في أسعار النفط وعلاقتها بالتضخم تحظى باهتمام كبير من قبل الاقتصاديين وصناع القرار. تم تقديم العديد من الدراسات التجريبية لتحليل آثار تغيرات أسعار النفط على استقرار الاقتصاد الكلي في العديد من الدول وخاصة كفاءة السياسة النقدية، وركزت الكثير منها على التحقق في ظاهرة التضخم في مختلف اقتصاديات هذه الدول، وفيما يلي استعراض موجز لأهم الدراسات ذات الصلة بالموضوع.

من أهم المساهمات الحديثة في هذا المجال الورقة البحثية التي قدمها كل من وسعر الصرف على تضخم أسعار التجزئة في ثلاث دول أسيوية وهي إندونيسيا، وماليزيا وسعر الصرف على تضخم أسعار التجزئة في ثلاث دول أسيوية وهي إندونيسيا، وماليزيا وماليزيا NARDL لالتقاط حجم التغيير لكل من الزيادة والانخفاض في سعر النفط وسعر الصرف على سعر التجزئة للتضخم. اكتشفا الباحثان أن الزيادة في سعر النفط لها تأثير أكبر على مؤشر أسعار المستهلك في جميع البلدان. كما أن النتائج في ماليزيا تشير إلى أن الزيادة في سعر النفط لها تأثير أكبر على مؤشر أسعار المنتجين من مؤشر أسعار المنتجين بشكل أكبر على مؤشر أسعار المنتجين بشكل أكبر من انخفاض سعر النفط. أما في تايلاند فإن الزيادة في سعر النفط تؤثر على كل من مؤشر أسعار المستهلك ومؤشر أسعار المنتجين بشكل كبير في انخفاضها. في حين يؤدي انخفاض قيمة العملة إلى زيادة تضخم الأسعار بشكل كبير في جميع البلدان وأوصى الباحثان صانعي السياسات بمواصلة برامج حوافز الطاقة الخاصة بهم، وبتعزيز السياسة النقدية وزيادة كفاءتها في الدول الثلاثة (Husaini & Lean, 2021).

دراسة أخرى قيمة قدمها كل من Köse, N., & Ünal, E (2021) حيث حاولا الباحثان من خلالها تحليل تأثير تغيرات أسعار النفط وتقلباتها على التضخم في تركيا من خلال استخدام نموذج SVAR للفترة الشهرية بين مارس 1988 وأغسطس 2019. تم تحليل

تأثيرات عدد من المتغيرات على التضخم من خلال تحليل التباين ودالة الاستجابة الفورية. وفقا لنتيجة تحليل التباين، فإن هناك تأثير الأسعار النفط على التضخم، ولوحظ زبادة تأثيره على مدار الأشهر الموالية. بالإضافة إلى ذلك، لوحظ في الشهر الأول أن تقلب أسعار النفط لم يكن له أي تأثير على التضخم، في حين أن تأثيره بدأ في الارتفاع في الفترات اللاحقة. كشف الباحثان أن السبب الأساسي وراء زيادة تأثير أسعار تقلبات أسعار النفط في الأشهر اللاحقة هو أن النفط منتج سلعي وعادة ما يتم شراؤه عند مستوى سعر محدد ويتم تخزينه. لذلك، بالمقارنة مع المتغيرات الأخرى، مثل سعر الصرف، فقد أصبح تأثيرها أكثر أهمية في الفترات اللاحقة. كما أظهرت النتائج أن استجابة التضخم لأسعار النفط كانت كبيرة وإيجابية في الأشهر الأولى، لكن تقلب أسعار النفط ظل ضئيلا. بالنسبة لتكلفة العمالة، أظهرت النتائج أن تأثيره زاد خلال فترة الدراسة، بينما في الشهر الأول لم يكن له أي تأثير على التضخم. النتائج أظهرت أيضا أن سعر الصرف هو أكبر مصدر للتغير في معدلات التضخم ولكن أثره انخفض بشكل طفيف على مدى الأشهر اللاحقة. في الأخير استنتج الباحثان أنه وبالرغم من أن حكومة تركيا بإمكانها أن تتبع سياسات الاقتصاد الكلى المستقرة، إلا أن تطورات أسعار النفط وتقلباتها هي مشاكل خارجية ولا يمكن أن تحدد من خلال السياسات الاقتصادية الوطنية. لذلك، وجب على صناع القرار اتباع سياسات لتقليل طلبها على النفط المتزايد وتطوير طرق بديلة لتلبية احتياجاتها من الطاقة (Köse & Ünal, 2021).

من جهته فحص Adebayo, T. S المشتركة والسببية من سعر النفط والتضخم في نيجيريا باستخدام البيانات الشهرية خلال الفترة الممتدة بين يناير 2007 ومارس 2020. وقد استخدم في هذه الدراسة تقنيات التماسك المويجي التي تعد إحدى التقنيات الجديدة نوعا ما في الاقتصاد والمالية للتحقق من الحركة المشتركة والسببية بينهما في وقت واحد. بالإضافة إلى ذلك، اعتمد على اختبارات سببية جرانجر وتودا ياماموتو كاختبارات اضافية لمعرفة قوة ومتانة تقنيات التماسك المويجي. كشفت النتائج الخاصة بهذه التقنية أن هناك حركة مشتركة إيجابية بين التضخم وأسعار النفط بين الفترة فبراير 2014 وجانفي 2017 على المقياس 4-8؛ كما أكدت النتائج وجود دليل على علاقة سببية بين أسعار النفط والتضخم. كشفت تقنية التماسك المويجي عن علاقة سببية أحادية الاتجاه تمتد من سعر النفط إلى التضخم وهو ما أكدته أيضا اختبارات السببية لجرانجر وتودا ياماموتو. وانطلاقا من هذه النتائج، أوصى الباحث إلى زيادة الاهتمام بتنويع مصادر الإيرادات في نيجيريا، بالأخص القطاع الزراعي الذي قد يوفر مصادر إضافية للإيرادات للتعامل مع نيجيريا، بالأخص التغيرات في أسعار النفط الخام (Adebayo, 2020).

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل الشترك

إختير كل من Živkov, D., Đurašković, J., & Manić, S من خلال ورقة بحثية أخرى كيفية تأثير تغيرات أسعار النفط على تضخم أسعار المستهلكين في أحد عشر دولة في وسط وشرق أوروبا. استخدم الباحثون الثلاثة نهج تبديل ماركوف القائم على تحليل المويجات للتمييز بين التأثيرات المختلفة في آفاق زمنية مختلفة. وبينت النتائج أن انتقال تغيرات أسعار النفط إلى التضخم منخفض نسبيا في دول أوروبا الوسطى والشرقية حيث أن ارتفاع سعر النفط بنسبة 100% يتبعه ارتفاع في التضخم بنسبة 1% إلى 6%. التأثير المنخفض نسبيا من النفط إلى التضخم ينقل رسالة مهمة للمستثمرين الدوليين، خاصة وأن التضخم يعتبر مؤشرا مهما للغاية لاستقرار الاقتصاد الكلي، وقد يمكن هؤلاء المستثمرين الدوليين أن يكونوا على ثقة من أن الصدمات النفطية لا يمكن أن تعطل استقرار الأسعار في بلدان وسط وشرق أوروبا المختارة، وهي سمة إيجابية لهذه البلدان. لكن تم العثور على أقوى تأثير لارتفاع أسعار النفط على التضخم في الآفاق الزمنية الأطول لمعظم البلدان، مما يعنى أن التأثير غير المباشر هو أكثر كثافة من التأثير المباشر. تشير النتائج التي تم التوصل إليها أيضا إلى أن سعر الصرف ليس عاملا مهما عندما تنتقل الصدمات النفطية نحو التضخم، إلا في الحالات التي يحدث فيها انخفاض كبير في القيمة. ولقد أظهروا أن سلوفاكيا وبلغاربا هما الدولتان اللتان شهدتا التأثير المار الأعلى والأكثر اتساقا في عينة الدراسة، وقد يرجع ذلك إلى أن هذه البلدان لديها أعلى نسب استيراد النفط إلى الناتج المحلى الإجمالي. هذه النتائج يمكن أن توفر أساسا مفيدا لفهم كيفية تأثير الصدمات النفطية على معدلات التضخم في دول وسط وشرق أوروبا، وما إذا كان هذا التأثير يتطلب التزاما كبيرا من السلطات النقدية لتخفيف هذه الصدمات (Živkov, Đurašković, & Manić .(2019

قدم (Thach N.N, 2019)، دراسة بهدف تحليل تأثير سعر النفط الخام العالمي على التضخم في الفيتنام من بداية السداسي الأول من سنة 2000 إلى السداسي الأخير لسنة 2015 باستخدام نموذج متجه الانحدار الذاتي الهيكلي (SVAR) وطريقة تحليل دوال الاستجابة النبضية (IRFs) وتحليل تباين أخطاء التنبؤ (FEVD). تظهر النتائج أن سعر النفط العالمي له تأثيرات إيجابية على التضخم (يقاس بمؤشر أسعار المستهلك). عندما يرتفع سعر النفط العالمي بمقدار انحراف معياري واحد، يرتفع التضخم بنسبة 2.34% في الربع الأول ويستمر هذا الاتجاه الصعودي حتى الربع الرابع. بالتزامن مع ذلك، لوحظ أقوى تأثير لسعر النفط العالمي على التضخم في الربع الخامس، وإن كان يتضاءل بعد ذلك. تشير النقط إلى أن سعر النفط العالمي له تأثير سلبي بشكل عام على نمو الناتج المحلي

الإجمالي الحقيقي للفيتنام. نقدم هذه الورقة بعض الآثار المترتبة على تنظيم أسعار النفط المحلية لتحسين كفاءة السياسة النقدية (Thach, 2019).

تؤثر التغيرات في أسعار النفط بشكل مباشر على تكاليف الإنتاج أيضا، وبالتالي على المستوى العام لأسعار المنتجات. لذا اهتم كل من Goh, L. T وجاءت دراستهم بعنوان "هل تؤثر أكبر الاقتصادات في جنوب شرق آسيا وهي إندونيسيا، وجاءت دراستهم بعنوان "هل تؤثر تقلبات أسعار النفط على معدل التضخم في إندونيسيا بشكل غير متناظر ؟" طبقت هذه الدراسة نموذج NARDL للتحقق من تأثير تقلبات أسعار النفط في إندونيسيا. تعتبر هذه الدراسة غاية في الأهمية بالنسبة للبنك المركزي لقياس فعالية سياسة استهداف التضخم في تحصين البلاد من تقلبات أسعار النفط. كشفت النتائج التي توصل إليها الباحثون عن وجود سلوك غير متماثل بين سعر النفط ومعدل التضخم (مؤشر أسعار المنتجين)، مما يشكك في فعالية سياسة استهداف التضخم في البلاد. وبشكل أكثر تحديدا، على المدى الطويل، ستؤدي الزيادة في سعر النفط إلى زيادة معدل التضخم بانحراف أكبر، بينما سيؤدي انخفاض سعر النفط ألى انخفاض معدل التضخم لكن بانحراف أقل. مما يشير في الأخير إلى أن فوائد خفض أسعار النفط قد لا تنتقل إلى المستهلك (Goh, Siong, & Irwan, 2020).

فيما يخص حالة الجزائر تعتبر الورقة البحثية التي قدمها كل Sirag, A (2019) هذه الموضوع، حيث تناولت هذه الدراسة العلاقة بين التغيرات في أسعار النفط ومعدل التضخم خلال الفترة 1970 إلى 2014. كانت طريقة الدراسة هذه قادرة على النقاط التأثير غير المتماثل لنقلبات أسعار النفط على مؤشر أسعار المستهلكين في الجزائر باستخدام نهج NARDL غير الخطي. كشف النموذج المقدر عن وجود تأثير غير خطي لأسعار النفط على التضخم أي وجود سلوك غير متماثل الصدمات أسعار النفط في تفسير تغيرات مؤشر أسعار المستهلك. على وجه التحديد، كشف الباحثان عن وجود علاقة مهمة بين ارتفاع أسعار النفط ومعدل التضخم. بينما لم تكن هناك علاقة ذات دلالة إحصائية بين انخفاض أسعار النفط والتضخم في حالة الجزائر، ويمكن أن يعزى التمرير المنخفض لأسعار النفط نحو التضخم إلى مخططات السياسة العامة مثل الإعانات المدارة وتكاليف التعديل (Lacheheb & Sirag, 2019).

دراسة ثانية قدمها كل من Benameur, A. G وآخرون (2020) حول الآثار الاقتصادية الكلية لتقلبات أسعار النفط في الجزائر باستخدام نماذج الانحدار الذاتي الهيكلية SVAR، وبالاعتماد على بيانات ربع سنوية تغطي الفترة من 1999 إلى 2019 وذلك من أجل تقييم استجابة إجمالي الحسابات القومية من جانبي الإنتاج والطلب لصدمات أسعار

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

النفط. تظهر النتائج أن الصدمة الموجبة لأسعار النفط لها تأثير ضئيل للغاية على قطاع التجارة، وتأثير سلبي على قطاع الزراعة. أما فيما يخص استجابة الطلب من الناتج المحلي الإجمالي فقد جاءت ايجابية على الاستهلاك النهائي (العمومي والخاص بالعائلات)، فمعدل النمو الإيجابي للاستهلاك العمومي هو دليل على وجود قناة مالية توسعية، أما بالنسبة لنمو استهلاك العائلات فهو ناتج عن إعادة توزيع الدخل الذي من المفترض أن يعزز القوة الشرائية للمستهلكين. من جهة أخرى تستجيب الواردات أيضا بشكل إيجابي للصدمات النفطية ولكن بنسبة أقل وهذا راجع إلى الدور الذي يلعبه صافي الاحتياطات الأجنبية في كسر تأثير الصدمات الخارجية، بما في ذلك الناجمة عن أسعار النفط. أشارت هذه الدراسة أيضا إلى أن تقلبات النشاط الاقتصادي الجزائري مرتبطة ارتباطا وثيقا بتقلبات أسعار النفط. ويرجع الإجمالي. ومع ذلك، فهذه ليست القناة الوحيدة التي تنتقل من خلالها صدمات أسعار النفط الى النمو الاقتصادي، حيث يتأثر قطاع البناء أيضا بشكل إيجابي بفعل التغيرات المفاجئة في أسعار النفط (Benameur, Belarbi, & Toumache, 2020).

كما تعتبر الدراسة الحديثة للباحثين جليط الطاهر ومخلوف عز الدين (2022) كمحاولة جيدة لتقييم أثر الصدمات النفطية على فعالية السياسة النقدية في استهداف معدلات التضخم في الجزائر خلال الفترة 2000–2019. اعتمد الباحثان على نموذج قياسي يضم ثلاث متغيرات وهي سعر النفط كمؤشر عن الصدمات النفطية والعرض النقدي ومعدل التضخم كمؤشرات عن السياسة النقدية. بينت نتائج الدراسة القياسية باستخدام نموذج متجه الانحدار الذاتي VAR أن التأثير النسبي في معدل التضخم يرجع بالأساس للتغيرات في سعر النفط، حيث بلغ انحدار سعر النفط حوالي –58.0 في حين لم يتجاوز ميل العرض النقدي نسبة 20,066. كما بينت دوال الاستجابة لتحليل الصدمات وتحليل التباين أن التغيرات الحاصلة في معدل التضخم تستجيب بدرجة أكبر للتغيرات التي تحدث في سعر النفط، سواء في المدى القصير أو المدى الطويل. هذه النتائج تدعم الفعالية النسبية الضعيفة للسياسة في استهداف معدل التضخم في حالة الجزائر (جليط ومخلوف، 2022).

محمد دحماني، دنيا كرزابي، منال عطوشي

الجدول رقم (1): ملخص للدراسات السابقة

النتائج المتحصل عليها	التقنيات المستخدمة	الدولة/ الإقليم	فترة دراسة	الباحثون		
الدول المصدرة للنفط						
تشير النتائج إلى عدم التماثل الكبير على المدى الطويل لارتفاع وانخفاض أسعار النفط. كما أن ارتفاع أسعار النفط له آثار إيجابية كبيرة على التضخم. في حين أن انخفاض سعر النفط له تأثير ضئيل على التضخم.	التكامل المشترك غير الخطي NARDL وPMG	دول مجلس التعاون الخليجي	* 2016–1970	Salah A.Nusair (2019)		
تأثر أسعار النفط على التضخم بشكل إيجابي.	البانل الديناميكي	الجزائر، أنغولا، ليبيا ونيجيريا	2014-1995	Bala and Chin (2018)		
سرعة انتقال أسعار النفط الى مؤشر أسعار المدى المستهلكين في المدى الطويل. كما أن تمرير سعر النفط التضخم غير متماثل لصدمات النفط الإيجابية والسلبية.	التكامل المشترك المخفي ونموذج CECM	إيران	مارس 2003– مارس 2013	Nazariyan, R., & Amiri, A. (2014)		
	ومصدرة للنفط)	لأخرى (مستوردة	الدوا			
وجود تقلب إيجابي في أسعار النفط حيث يمر عبر التضخم في المدى القصير، مع ردود فعل عرضية من التضخم إلى أسعار النفط.	التحليل في مجال التردد وفي المجال الزمني	الصين	جانفي 1999 – ديسمبر 2019	Xiang, L., et al (2021)		
تعتبر صدمات أسعار النفط أهم محددات تقلبات التضخم ولها تأثير غير متماثل في المدى القصير وأيضا لصدمات معدل الفائدة على التضخم، في حين أن تمرير سعر الصرف للتضخم تأثيره ضعيف للغاية على المدى القصير.	نموذج NARDL غير الخطي	الفلبين	2019-1998	Roperto S. Deluna Jr., et al (2021)		

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

يتبع...

	ومصدرة للنفط)	ل الأخرى (مستوردة	الدوإ	
تشير دوال الاستجابة	التكامل المشترك:			
الدفعية إلى أن صدمة	Johencen	دول جنوب آسيا	جانف <i>ي</i> 1980 –	
أسعار النفط تؤثر بشكل	G-H		ديسمبر 2018	Zakaria, M.,
إيجابي على التضخم وهذا	NARDL			Khiam, S., &
التأثير دائم. كما أن سعر	السببية			Mahmood, H. (2021)
النفط له تأثير غير متماثل				(2021)
على التضخم.				
على التضخم. استجابة غير متماثلة	نموذج NARDL	غانا	مارس 2000 –	Audal D.K
للتضخم للتغيرات في أسعار	غير الخطي		مارس 2016	.Ayisi, R.K
النفط.				(2021)
أسعار النفط العالمية تؤثر				Albulescu, C.
فقط على معدل التضخم	سببية مجال التردد	رومانيا	ديسمبر 2005	T., Oros, C., &
الذي يشمل الأسعار			– جوان 2016	Tiwari, A. K.
المتقلبة.				(2017)
تغيرات أسعار النفط لها				
تأثير مباشر محدود على	نموذج ARDL	ماليزيا	2015-1980	
أسعار المستهلك على المدى	الخطي وغير			Sek, S. K.
الطويل. بينما تأثيرها على	الخطي			(2017)
أسعار المستهلك يكون				,
بشكل غير مباشر.				
		البرازيل، الهند،		
في البرازيل والهند	نموذج الانحدار	تشيلي،	أبريل 1994 –	
والمكسيك، أدت صدمة	الذاتي الهيكلي	المكسيك	فيف <i>ري</i> 2016	Sakashita, Y.,
أسعار النفط إلى خفض	SVAR	الولايات المتحدة		& Yoshizaki, Y.
مستوى الأسعار .		الأمريكية		(2016)
c		وروسيا		
ظهور تأثير غير المتماثل	نماذج تبديل نظام	تركيا	فيفر <i>ي</i> 1986 –	Catik and
لمرور وانتقال أسعار النفط	ماركوف		دىسمبر 2008	Önder (2011)
نحو معدل التضخم				, ,
أسعار النفط تسبب التضخم.	نموذج الـ GARCH	تايوان	جانفي 1986 –	Lu et al (2010)
	الثنائي		دىسمبر 2008	(/

ملاحظة: * البحرين (1975–2016)، الكويت (1972–2016)، عمان (1970–2016)، قطر (1979–2016)، الملكة العربية السعودية (1979–2016)، والإمارات العربية المتحدة (1970–2016).

المصدر: إعداد الباحثان.

معمد دحماني، دنيا كرزابي، منال عطوشي

بالنسبة للدول النامية وبالأخص تلك المصدرة للنفط، بينت هذه المراجعة أنه على الرغم من أن بعض الأعمال التي تمت مناقشتها أعلاه نظرت في تأثيرات تقلب أسعار النفط على الديناميكيات الاقتصادية المختلفة (دراسة Lacheheb, M., & Sirag, A) على دراسة Salah A.Nusair، و2011، 2014، Nazariyan, R., & Amiri, A. بالا أن بعض النتائج تظل غير حاسمة ومبهمة. إن هذه الدراسة في تأثير أسعار النفط على التضخم تتميز بنوع من التفصيل وبطرق قياسية مختلفة، حيث يسد هذا العمل الفجوة في الأدبيات باستخدام اختبار MAKI للتكامل المشترك ومقارنة نتائجه مع اختبار التكامل غير الخطى (اللامتماثل) NARDL، وهو أمر غاية في الأهمية حيث أن التركيز على تقدير نموذج NARDL غير الخطى الذي يتفوق على نموذج ARDL الخطى يعد مساهمة مهمة في الأدبيات الحالية التي نادرا ما طبقت في حالة الجزائر مع اختبار اللاخطية BDS test. كما أن اختيار طربقة اقتصادية قياسية مناسبة قد يجعل الآثار السياسية للتحليل أكثر موثوقية. كما استخدمت الورقة أيضا اختبارات جذر الوحدة بوجود انكسارات هيكلية. فلقد أشار Perron (1989) إلى أن مشكلة جذر الوحدة في السلسلة قد تكون ناجمة عن حدوث تغييرات هيكلية. ومنه فإن اختبارات جذر الوحدة التقليدية قد توفر نتائج غامضة بسبب قوتها التفسيرية المنخفضة وتوزيعها الضعيف للحجم (Shahbaz et al., 2017). يتم حل هذه المشكلة من خلال تطبيق اختبار جذر الوحدة الذي يستوعب نقاط توقف هيكلية. حيث قامت الورقة بفحص السلاسل الزمنية باستخدام اختبارات جذر الوحدة المختلفة، اختبار Zivot and Kapetanios واختبار (2003) Lee and Strazicich اختبار (1992)، واختبار .(2005)

وبسبب اعتماد الجزائر الشديد على النفط في صادراتها (95% من الصادرات الكلية وبسبب اعتماد الجزائر الشديد على النفط في صادراتها (95% من الصادرات الكلية (2018)، فإن لارتفاع أسعار النفط، وتراجعها آثارا على الاقتصاد ككل، لذلك تعد هذه الدراسة وباستخدام هذا النهج الحديث نوعا ما أمرا مهما قد يمكن صانعي السياسات من فهم ديناميكيات التضخم في الجزائر، وأيضا يساعد السلطات النقدية في البلد من تحقيق درجة عالية من المصداقية لإدارتها؛ وقد يكون هناك إطار عمل لاستهداف التضخم بشكل مناسب. كل هذا سيساهم في إيجاد حلول جذرية للتخفيف من تأثير تغيرات أسعار النفط على حدة التضخم في الاقتصادات النامية والتي تعتمد إلى حد كبير على هذا المورد في صادراتها.

هل يؤثر سعر النفط على معدل التضفم في الهزائر؟ نظرة جديدة على أساس اغتبار NARDL وMAKI للتكامل المسترك

3. البيانات والإطار المنهجي

1.3. وصف البيانات

في دراستنا هذه، سنستخدم البيانات السنوية لبعض متغيرات الاقتصاد الكلي وأهمها: أسعار نفط برينت (OIL) تم الحصول عليه من قاعدة بيانات الأوبك، الرقم القياسي لأسعار المستهلك المستخدم كبديل للتضخم (CPI) (CPI)، عرض النقود الموسع (M2) كأداة للسياسة النقدية، أما Xi فتشير إلى متغيرات التحكم الأخرى مثل سعر الصرف الاسمي كأداة للسياسة النقدية، أما (GDP) وCDP (فجوة الناتج أيضا (Gap) محسوبة بالاستعانة بمصفي (HP). كان الدافع وراء إدراج هذه المتغيرات الرقابية هو دور السياسة النقدية في شحذ الاقتصاد أثناء صدمات أسعار النفط. إذا عملت السلطات النقدية على إبقاء نمو الناتج المحلي الإجمالي الاسمي ثابتا، فسوف يتسارع معدل التضخم بنفس المعدل الذي يتباطأ فيه نمو الناتج المحلي الإجمالي الحقيقي. إذا أبقت السلطات النقدية على سعر الصرف الاسمي ثابتا، سينخفض معدل التضخم وسيزداد الضغط على العملات الأجنبية (, 2018–2020). استخدمنا في هذه الدراسة البيانات السنوية حسب ما هو متاح من 1975–2020. مصادر البيانات أغلبها من قاعدة بيانات البنك الدولي WB، ومن مؤشرات التنمية العالمية مصادر البيانات أغلبها من قاعدة بيانات البنك الدولي أسعار النفط، حيث نميز بين الصدمات الإيجابية في أسعار النفط (OIL).

2.3. الإطار المنهجي

1.2.3. اختبار جذر الوحدة مع وجود فاصل هيكلي

قبل الشروع في اختبارات التكامل المشترك، بدأت هذه الدراسة القياسية بإجراء اختبار جذر الوحدة لجميع المتغيرات باستخدام اختبارات جذر الوحدة في وجود فواصل هيكلية. إن تطبيق نهج اختبارات جذر الوحدة لديكي فولر (ADF) وفيليبس بيرون (PP) المعزز قد تؤدي إلى نتائج مضللة من خلال تجاهل الفواصل الهيكلية في السلسلة (Mujtaba &). لمعالجة هذه المشكلة، يتم استخدام اختبار Jena, 2021). تم توضيح نتائج اختبار ZA في الجدول 2.

محمد دحمانی، دنیا کرزابی، منال عطوشی

Zivot–Andrews مع فاصل هيكلي	ر الوحدة	اختبار جذر	(2): نتائج	الجدول رقم
-----------------------------	----------	------------	------------	------------

مستوى		الفرق الأول			في المستوى		
التكامل	III	II	I	III	II	I	المتغيرات
1(9)	-4.57 (0)	-3.04 (0)	-4.00 (1)	-3.38 (1)	-3.50 (1)		CPI_t
I(?)	1997	1994	1997	1986	1987		ТВ
T(1)	-6.26 (0)*	-6.02 (0)*	-6.43 (0)*	-3.48 (0)	-2.26 (0)	-3.46 (0)	OIL_t
I(1)	2012	2008	2012	2005	1989	2004	ТВ
T(9)	-4.12 (2)	-2.49 (2)	-3.84 (2)	-3.09 (3)		-3.08 (3)	ECH_t
I(?)	2003	2009	2003	1994		1994	ТВ
T(0)	-6.97 (2)*	-6.56 (2)*	-7.02 (2)*	-6.94 (0)*	-6.00 (0)*	-6.49 (0)*	$M2_t$
I(0)	2002	1992	2002	2001	2008	1997	TB
T(0)	-5.15 (4)**	-4.66 (4)**	-5.11 (4)**	-5.18 (0)**	-3.80 (0)	-4.46 (0)***	GDP_t
I(0)	1995	2002	1994	1995	1987	1998	ТВ
I(0)	-6.08 (4)*	-5.55 (4)*	-5.69 (4)*	-5.09 (3)**	-4.72 (3)**	-5.10 (3)**	GAP_t
1(0)	2012	1989	2010	2008	1988	1998	TB

المصدر: إعداد الباحثان وبالاعتماد على مخرجات برنامج Eviews12

تبين من خلال نتائج اختبار Z-A بوجود فاصل هيكلي واحد أن ثلاث سلاسل زمنية ظهرت مستقرة عند مستواها وهي تخص المتغيرات $(GAP_t, M2_t)$ ، في حين استقرت فقط السلسلة الخاصة بالمتغير OIL_t عند أخذ الفرق الأول. ونظرا لأن بعض السلاسل لم تستقر حتى بعد أخذ الفرق الأول كما هو ملاحظ في الجدول 2، لجأنا إلى اختبار آخر لجذر الوحدة مع وجود فواصل هيكلية. قمنا بإجراء اختبار 2003 لجذر الوحدة مع وجود فاصلين هيكليين 2003 Lee and Strazicich) وفقط للسلاسل التي لم تستقر بعد أخد الفرق الأول. تنص الفرضية الصفرية لهذا الاختبار على أن السلسلة بها جذر وحدة مع فاصلين هيكليين (السلسلة غير مستقرة). نستعرض في الجدول 2. التالي نتائج اختبار جذر الوحدة مع وجود فاصلين بنيوبين 2.

هل يؤثر سعر النفط على معدل التضفم في الهزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

الجدول رقم (3): نتائج اختبار جذر الوحدة مع وجود فاصلين هيكليين L-S

T ()	الفرق الأول		ستو <i>ى</i>	الم تشريات	
I()	نموذج B	نموذج A	نموذج B	نموذج A	المتغيرات
	-5.11 (1)	**-3.60 (1)	-6,06 (4)	-3.01 (2)	CPI_t
I (1)	1990	1990	1992	1994	TB_1
1(1)	1998	2000	2004	2011	TB_2
	**-6.36 (1)	*-5.80 (1)	-4.11 (3)	-3.33 (4)	ECH_t
I (1)	1987	1996	1993	1993	TB_1
	2001	1999	2006	2014	TB_2

المصدر: إعداد الباحثان وبالاعتماد على مخرجات برنامج Eviews12

 1 TB و 2 TB: تواريخ الفواصل الهيكلية . النموذج ا: (Crash (A) النموذج الثاني ال: (K ، Break (C) : II و 1 TB و 1 Kو 1 التأخير المثلى المستخدمة في اختبارات جذر الوحدة 1 محددة وفق معيار AIC و 1 Yزالة الارتباط التسلسلي في سلسلة البواقي. 1 ، 1 تدل على قبول الفرضية العدم لجذر الوحدة عند مستويات 1 و 1 و 1 على التوالي.

لدعم هذه النتائج ارتأينا اللجوء لاختبار حديث نوعا ما وهو اختبار Kapetanios الدعم هذه النتائج ارتأينا اللجوء لاختبار عدرة خمسة فواصل هيكلية وهذا لتجنب أي نتائج زائفة بترتيب تقديرات التكامل على المدى الطويل بعد التحقق من وجود علاقة التكامل المشترك.

الجدول رقم (4): نتائج اختبارات جدر الوحدة في وجود فواصل هيكلية Kapetanios test

القرار	القيم الحرجة عند 5%	تاريخ الانكسارات	t- statistic	المتغيرات			
I(1)	-7.006	2008 ،1996 ،1989	-4.35	CPI_t			
I(1)	-7.006	2009 ،2001 ،1985	-6.08	OIL_t			
I(1)	-7.006	2014 ،2002 ،1988	-5.23	ECH_t			
I(0)	-7.006	2006 ،2000 ،1990	*-9.29	$M2_t$			
I(1)	-7.006	2014 ،2004 ،1994	-6.57	GDP_t			
I(1)	-7.006	2014 ،2005 ،1985	-6.50	GAP_t			
I(0)	-7.006	2014 ،1996 ،1988	*-7.06	$\Delta(CPI_t)$			
I(0)	-7.006	2014 ،2004 ،1981	*-8.34	$\Delta(OIL_t)$			
I(0)	-7.006	2014 ،2002 ،1993	*-10.50	$\Delta(ECH_t)$			
I(0)	-7.006	2007 ،2001 ،1992	*-8.95	$\Delta(M2_t)$			
I(0)	-7.006	1994 ،1988 ،1981	*-9.60	$\Delta(\text{GDP}_t)$			
I(0)	-7.006	1981، 1987، 2013	*-9.43	$\Delta(GAP_t)$			
	$^{^{\circ}}$ تشير إلى مستوى المعنوية عند 5%؛ Δ تدل على سلسلة الفروق الأولى.						

المصدر: إعداد الباحثان وبالاعتماد على مخرجات برنامج Gretl

[0.048]

0.048

2.2.3. اختبار BDS Test للاخطية

لاختبار ما إذا كانت اللاخطية موجودة في المتغيرات أم لا، نطبق اختبار BDS حيث توضح الفرضية الصفرية (H0) أن السلسلة مستقلة وموزعة بشكل متماثل. وسوف نقارن إحصائيات الاختبار المحسوبة مع القيم الحرجة، وفي حالة أن القيم المحسوبة أكبر من القيم الحرجة يتم قبول الفرض البديل، مما يدل على وجود اللاخطية. في حالة تأكيد اللاخطية، يمكن أن نتحرك نحو تقدير معاملات نموذج NARDL غير الخطي (al., 2020).

			الأبعاد		
المتغيرات	m = 2	m = 3	m = 4	m = 5	m = 6
CPI_t	*0.188	*0.310	*0.390	*0.448	*0.492
OILt	*0.129	*0.204	*0.241	*0.298	*0.332
ECH_t	*0.171	*0.286	*0.369	*0.425	*0.462
$M2_t$	*0.02	0.005	0.017	0.016	-0.019
GDP.	-0.002	*0.038	*0.067	*n n89	*0.096

0.030

الجدول رقم (5): اختبار BDS للخطية

تشير * و ** و *** إلى المعنوبة عند مستوى دلالة 10% و 5% و 1% على التوالي.

0.021

المصدر: إعداد الباحثان وبالاعتماد على مخرجات برنامج Eviews 12

-0.007

 GAP_t

اختيارنا لاستخدام نهج BDS غير الخطي الذي اقترحه H_0 المتخدام نهج كAR من أجل الكشف عن بواقي نموذج اله VAR، حيث تم رفض الفرضية العدم H_0 في اختبار BDS بتوزيعات مستقلة ومتماثلة، النتائج تشير إلى أن جل السلاسل الزمنية تقريبا لها خصائص غير خطية تحت أبعاد مختلفة (h_0 = 2 ، 3 ، ... ، 6). وكما هو مبين في الجدول 5 ، فتتائج اختبار BDS تشير إلى أن الفرضية العدم للاعتماد الخطي قد تم رفضها عند مستوى معنوية 1%، مما يدل على أن النموذج غير الخطي هو الأكثر ملاءمة لاكتشاف العلاقات قصيرة المدى بين متغيرات الدراسة (h_0 & Broock, Scheinkman, Dechert, h_0).

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

3.2.3. اختبار الحدود من التكامل المشترك غير الخطى ونتائج NARDL

لدراسة عدم التماثل لتأثير المتغيرات المستقلة على المتغير التابع، يمكن أن نستخدم لدراسة عدم التماثل لتأثير المحكورة (NARDL) فالذي غير خطي من نوع (MARDL) والذي طوره GDP $_t$ ، M $_t$ ، ECH $_t$ ، OIL $_t$ ، CPI $_t$ ، lize النحو التالي، GDP $_t$ ، M $_t$ ، CPI $_t$ ، CPI $_t$ ، PD $_t$ ، PD

$$CPI_t = f(OIL_t, ECH_t, M2_t, GDP_t)$$
 (1)

هذا النموذج يسمح بفصل التأثيرات غير المتماثلة في كل من المدى الطويل والمدى القصير، وهو امتداد غير متماثل لنموذج ARDL الخطى وبكتب على الشكل التالى:

$$CPI_t = f(OIL^+_t, OIL^-_t, ECH_t, M2_t, GDP_t)$$
 (2)

يتبع هذا النموذج تحليلا عاما شاملا لتجنب أي أخطاء في التقدير، وللحصول على المضاعفات الديناميكية الصحيحة عن طريق إسقاط جميع المتغيرات غير المهمة. استنادا إلى مناقشتنا حول الاستجابة غير الخطية للمتغير التابع CPI_t للصدمات الخارجية، نفترض أن المتغير المستقل OIL_t له تأثير غير متماثل على المتغير التابع CPI_t . لذا فإن نقطة البداية هي توضيح نموذج الانحدار غير المتماثل في المدى الطويل على النحو التالي: (Shin, Yu, & Greenwood-Nimmo, 2014):

$$CPI_{t} = \alpha_{0} + \alpha_{1}OIL_{t}^{+} + \alpha_{2}OIL_{t}^{-} + \alpha_{3} ECH_{t} + \alpha_{4} M2_{t} + \alpha_{5} GDP_{t}$$

$$+ \varepsilon_{t}$$
(3)

$$OIL_{t} = \beta^{+}OIL_{t}^{+} + \beta^{-}OIL_{t}^{-} + u_{t}$$

$$\tag{4}$$

⁽GDP $_t$ ، M 2_t · ECH $_t$ ، OIL $_t$ ، CPI $_t$: Italias: Italias: Italias: الأول باستخدام المتغيرات التالية: GDP_t ، M 2_t · ECH $_t$ ، OIL $_t$ ، CPI $_t$: قامت النموذج الثاني استخدمت الدراسة نفس المتغيرات ما عدا الناتج المحلي الإجمالي والتك يعكس التقلبات في الناتج المحلي الإجمالي الحقيقي.

حيث: $\beta \in \beta^{-}$ هي المعلمات طويلة المدى المرتبطة، و β^{-} هي عمليات مجموع جزئي للتغيرات الإيجابية والسلبية في المتغير OIL_t ، و OIL_t ما هو إلا متجه الانحدار المفصل والمعرف على النحو التالي:

$$OIL_{t} = OIL_{0} + OIL_{t}^{+} + OIL_{t}^{-}$$

$$(5)$$

$$\sum_{j=1}^{l} \max \left(\Delta OIL_{j}, 0 \right) \tag{6}$$

$$OIL_{j}^{-} = \sum_{j=1}^{t} \Delta OIL_{j}^{-} = \sum_{j=1}^{t} \min(\Delta OIL_{j}, 0)$$
 (7)

شين وآخرون (2014)، قاموا بربط المعادلة (3) مع نموذج الـ ARDL الخطي لبيساران وآخرون (2001) للحصول في الأخير على علاقة الـ ARDL غير الخطي (NARDL). وبالتالي فإن صيغة (p,q) بمكن تحديده على النحو التالي:

$$\begin{split} \Delta CPI_{t} &= \alpha_{0} \ + \rho CPI_{t-1} + \theta^{+}OIL_{t-1}^{+} + \theta^{-}OIL_{t-1}^{-} + \lambda \ ECH_{t-1} \\ &+ \delta \ M2_{t-1} + \partial \ GDP_{t-1} \\ &+ \sum_{j=1}^{p} \gamma_{j} \ \Delta CPI_{t-j} + \sum_{j=1}^{q} \mu_{j} \ \Delta ECH_{t-j} + \sum_{j=1}^{q} \varphi_{j} \ \Delta \ M2_{t-j} \\ &+ \sum_{j=1}^{q} \tau_{j} \ \Delta \ GDP_{t-j} \\ &+ \sum_{j=0}^{q} \left(\pi_{j}^{+} \ \Delta OIL_{t-j}^{+} + \pi_{j-}^{-} \ \Delta OIL_{t-j}^{-} \right) + e_{t}, \quad (8) \\ \beta^{-} &= -\theta^{-}/\rho \quad \text{o} \quad \beta^{+} = -\theta^{+}/\rho \quad \text{exp} \quad \text{o} \quad j = 1, \dots, q-1 \end{split}$$

. معلمات نموذج الـ NARDL في المدى الطويل : ρ , θ^+ , θ^- , λ , δ , ∂

. معلمات نموذج الـ NARDL في المدى القصير : γ , μ , ϕ , τ , π^+ , π^-

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

تتمثل الخطوة الأولى في تقدير نموذج(p,q) (أي المعادلة (8))، أما الخطوة الثانية، إجراء اختبارات التكامل المشترك غير الخطي (الفرضية الصفرية: عدم وجود تكامل مشترك) أي:

$$\rho = \theta^+ = \theta^- = 0$$

ويتم اختباره عن طريق إجراء اختبار الحدود الذي قدمه كل من بيساران وآخرون (2011)، وشين وآخرون (2014) القائم على اختبار F_{PSS} المصححة (تعرف أيضا بـ F_{PSS}). يستخدم إجراء هذا الاختبار حدين حرجين؛ حد علوي وحد سفلي. إذا تجاوزت القيمة المحسوبة لإحصائية F_{PSS} الحد الأعلى، فهناك دليل على وجود علاقة توازن في المدى الطويل؛ أما إذا كانت تقع أسفل الحد الحرج الأدنى، فلا يمكن رفض فرضية العدم أي غياب تكامل مشترك غير متماثل. في حين إذا كانت تقع بين الحدود الحرجة فإن الاختبار غير حاسم في هذه الحالة (Pesaran, Shin, & Smith, 2001).

الاختبار الثاني هو اختبار t_{BDM} لـ Banerjee وآخرون ويقوم هذا الاختبار على الفرضيات التالية (Banerjee, Dolado, & Mestre, 1998):

 H_0 : $\theta = 0$ H_A : $\theta < 0$

كيف تستنج الدراسة القرار المناسب؟ إذا رفضنا H_0 (غياب تكامل مشترك)، فإننا نستنتج أنه يوجد تكامل مشترك بين متغيرات الدراسة القياسية في وجود عدم تناسق (عدم التماثل). الجدول (δ) التالي يوضح نتائج اختبار النموذجين:

معمد دحمانی، دنیا کرزاہی، منال عطوشی

نموذج NARDL غير المتماثل		نموذج ARDL المتماثل		الاختبار
t_{BDM}	F_{PSS}	t_{BDM}	F_{PSS}	T
-5.067 **	**8.705	-5.189 **	**7.044	$:I$ النموذج: CPI $_t = f(OIL_t, ECH_t, M2_t, GDP_t)$
ل مشترك	وجود تكام	وجود تكامل مشترك		القرار
نموذج NARDL غير المتماثل		AF المتماثل	نموذج RDL	الاختبار
t_{BDM}	F_{PSS}	t_{BDM}	F_{PSS}	النموذج Π:
-2.592	2.697	-3.317	3.921	$CPI_t = f(OIL_t, ECH_t, M2_t, GAP_t)$
ل مشترك	غياب تكام	ىل مشترك	غياب تكاه	القرار

الجدول رقم (6): نموذج اختبار الحدود والتكامل المشترك غير الخطي

ملاحظات: تشير إحصائيات FPSS غير الخطية إلى إحصاء F الذي اقترحه (2014 ،et al.،Shin). وأيضا سنة (2001) اختبار الحدود. تظهر تشير إحصائيات TBDM الإحصائيات الذي اقترحه Banerjee وآخرون. (1998). تظهر القيم p بين قوسين.

** و *** تشير إلى مستوبات المعنوبة عند مستوبات 5% و 1% على التوالي.

المصدر: حساب الباحثين باستخدام Eviews 12.

يببن الجدول (6) نتائج اختبار الحدود والتكامل المشترك غير الخطى وذلك بتطبيق نموذجي ARDL و NARDL على التوالي، وقد أوضحت نتائج النموذج I أن هناك علاقة تكامل مشترك بين المتغيرات في كلا النموذجين الخطى (المتماثل) واللاخطي (غير المتماثل) وهذا راجع إلى معنوبة قيمة الإحصائيتين $F_{\rm PSS}$ و $t_{\rm BDM}$ عند مستوى 5% مما يؤكد وجود علاقة طويلة المدى بين متغيرات الدراسة القياسية. أما بالنسبة للنموذج Π فالنتائج أكدت غياب وجود تكامل مشترك عند تطبيق نموذج ARDL المتماثل، والنموذج غير المتماثل NARDL ، حيث تم قبول الفرض العدم وجاءت الإحصائيتين F_{PSS} و t_{BDM} غير معنوبة عند جميع المستوبات أي غياب علاقة التكامل المشترك في النموذج الثاني.

الخطوة الثانية، يتم عرض النتائج التجريبية لمقدرات النماذج الخطية والغير خطية في الجدول (7) وإجراء اختبارات والد لعدم التماثل في المدى القصير والطويل في نفس الجدول:

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المُشترك

الجدول رقم (7): تقدير النماذج المتماثلة والغير متماثلة

$\mathit{CPI}_t = f(\mathit{OIL}_t, \mathit{ECH}_t, \mathit{M2}_t, \mathit{GDP}_t) : I$ النموذج					
	المتغير التابع:ΔCPI				
النموذج الغير متماثل NARDL	النموذج المتماثل ARDL	المتغيرات			
قصير	المدى القصير				
-8.06 *	-3.44 *	С			
0.91 *	0.37 *	TREND			
0.65 *	0.54 *	D(CPI(-1))			
0.03	0.09	D(CPI(-2))			
0.88	0.41 *	D(CPI(-3))			
	0.03 ***	D(OIL)			
	-0.02	D(OIL(-1))			
	-0.04 **	D(OIL(-2))			
	-0.04 *	D(OIL(-3))			
-0.03		D(OIL+)			
-0.05		$D(OIL^+(-1))$			
-0.08 *		$D(OIL^+(-2))$			
-0.05		$D(OIL^+(-3))$			
0.32 *	0.22 *	D(ECH)			
-0.06		D(ECH(-1))			
0.09 **		D(ECH(-2))			
-0.01	-0.01	D(M2)			
0.19 *		D(GDP)			
-0.69 *		D(GDP(-1))			
-0.47 *		D(GDP(-2))			
-0.43 *		D(GDP(-3))			
-3.83 *	-4.95 *	D2			
8.22 °	3.61 *	D3			
-0.90 *	-0.50 *	ECM(-1)			
0.95	0.88	R^2			
0.90	0.83	$ar{R}^2$			

معمد دحمانی، دنیا کرزابی، منال عطوشی

يتبع ...

$CPI_t = f(OIL_t, ECH_t, M2_t, GDP_t) : I$ النموذج						
	المتغير التابع:ΔCPI					
النموذج الغير متماثل NARDL	النموذج المتماثل ARDL	المتغيرات				
طويل	المدى الد	اللوحة 2:				
	0.24 *	OILt				
0.18 *		OIL_t^+				
0.14 *		OIL_t^-				
0.72 *	0.88 *	ECH_t				
-0.16 *	-0.14 ***	$M2_t$				
0.93 **	0.15	GDP_t				
ویل Asymmetry	اللاتماثل في المدى الط	اللوحة 3:				
10.98 *		W_{LR}				
مىير Asymmetry	اللاتماثل في المدى القم	اللوحة 4:				
3.50 ***		W_{SR}				
مية للنماذج	الاختبارات التشخيص	اللوحة 5:				
1.53 (2) *	0.79 (2) *	LM _(F) test (P-value) -2-				
صية للنماذج	الاختبارات التشخب	اللوحة 5:				
1.06 (2) *	1.75 (2) *	ARCH (F) test (P-value) -2-				
1.47 *	0.41 *	Normality test (JB) (P-value)				
2.01 (2) *	0.03 (2) *	RESET (F) test (P-value)				
مستقر	مستقر	CUSUM				
مستقر	مستقر	CUSUMSQ				

ملاحظة:

تشير الإشارتين " + "و" -" إلى العمليات الجزئية الإيجابية والسلبية، على التوالي. تشير *، **، و *** إلى مستوى المعنوية عند 1% و 5% و 1% على التوالي. $-\theta^+/\rho=-\theta^-/\rho$ على التوالي الذي يحدده: W_{LR} يشير إلى اختبار والد للتماثل على المضافة على المدى القصير المحددة بواسطة: W_{SR} يشير إلى اختبار والد لحالة التماثل المضافة على 10 المحددة بواسطة: 11 يشير إلى اختبار والد لحالة التماثل المضافة على المدى القصير المحددة بواسطة: 12 يشير إلى اختبار والد لحالة التماثل المضافة على المدى المحددة بواسطة ا

الفرض العدم: "وجود تأثيرات متماثلة"

المصدر: حساب الباحثين باستخدام Eviews 12.

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

الجدول 7، يمثل نتائج تقدير النماذج المتماثلة والغير متماثلة. اللوحة (1) تشير إلى تقدير المعلمات في المدى القصير. نلاحظ أنه في كلا النموذجين المتماثل وغير المتماثل: معامل الرقم القياسي لأسعار المستهلك المتأخر يحمل الإشارة الموجبة وهو معنوي عند مستوى 1% D(CPI(-3)) و D(CPI(-1)) مقبول احصائيا فقط في نموذج الـ ARDL، بالإضافة إلى أن سعر الصرف الاسمي ECH يؤثر إيجابا على التضخم عند مستوى الدلالة الاحصائية 1%، أما عرض النقود الموسع M2 فله تأثير سلبي ضعيف على الـ CPI.

في النموذج الخطي، لدى أسعار النفط علاقة طردية مع معدلات التضخم عند الدلالة الاحصائية 10%. أما في نموذج NARDL فإن معامل الناتج المحلي الإجمالي (GDP) موجب ومعنوي عند مستوى 1%، أما فيما يخص أثر الصدمات النفطية على الرقم القياسي لأسعار المستهلك في الأمد القصير فوحدها الصدمات الموجبة من تؤثر سلبا على التضخم (معلمة $(-2)^+$ 0.10 معنوية عند مستوى $(-2)^+$ 1. جاءت معلمتا نموذج تصحيح الخطأ بر $(-2)^+$ 2 و $(-2)^+$ 3 في النموذجين المتماثل وغير المتماثل على التوالي، وهما معنويتان احصائيا وتحملان الإشارة السالبة. وهذا ما يشير إلى عملية تعديل سريعة، فوهما معنويتان احصائيا وتحملان الإشارة السالبة. وهذا ما يشير إلى عملية تعديل سريعة، فولا من صدمات العام السابق تتعدل مرة أخرى إلى التوازن طويل المدى في العام الحالي. في كل من النموذجين، قيمة معامل التحديد $(-2)^+$ 4 جيدة، ومنه نقول أن المتغيرات المستقلة بإمكانها أن تفسر المتغير التابع بنسبة $(-2)^+$ 4 و $(-2)^+$ 5 بالنسبة لنموذج NARDL على التوالي.

يمثل D2 و D3 المتغيران الوهميان لسنتي 1996 و 2008 وهي ما تؤكده نتائج اختبارات جذر الوحدة في وجود فواصل هيكلية Kapetanios test (الجدول 4)، حيث جاء معامل D2 سالبا ومعنويا عند مستوى1% فحسب CNES في عام 1996 كانت الزيادة في الأجور والرواتب ضعيفة جدا حيث انخفضت إلى 2,08% مقارنة بـ 24,45% في العام السابق، هذا ما نتج عنه فيما بعد تراجع في معدلات التضخم من 18,67% إلى 5.73% و 4.95% في التوالي.

في 2008 بلغ سعر النفط أعلى قيمة له حيث وصل إلى 147.27 دولار للبرميل، وهي صدمة النفط لعام 2008 والتي نجمت عن تقليص المعروض النفطي السعودي. كما توضح الأزمة المالية لعام 2008 الآثار القوية للانخفاض الحاد في الطلب على أسعار السلع الصناعية. والجزائر مثلها مثل باقي الدول تأثرت بالأزمة المالية مما سبب ارتفاعا تضخميا للأسعار، وهذا ما تؤكده الاشارة الموجبة والمعنوية الاحصائية لـ معلمة الـ D3.

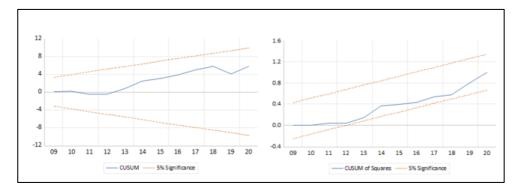
من جهة أخرى اللوحة 2 تمثل نتائج التقدير في المدى الطويل، نموذج الـ NARDL يبين أن وقوع صدمة موجبة في أسعار النفط بمقدار 1% يؤدي إلى ارتفاع معدل التضخم بمقدار بنسبة 1.0%، أما 1% من الصدمة النفطية السالبة تخفض معدل التضخم بمقدار 0.14%، وكلا النتيجتين ذات دلالة احصائية عند مستوى 1%. أما في النموذج الخطي ARDL فإن لأسعار البترول أثر ايجابي على CPI. بما أن النفط هو المحرك الرئيسي للنشاط الاقتصادي في الجزائر، حيث تعتمد عائدات الحكومة بشكل كبير على عائدات هذا الأخير، حيث أن ارتفاع أسعار النفط، ستزيد من عائدات الصادرات، والإيرادات الحكومية، ومنه ارتفاع في حجم الناتج المحلي الإجمالي، فتعمد الحكومات لإقامة مشاريع كبيرة بالإضافة للبرامج الاجتماعية بشكل أساسي (مثل زيادة مدفوعات التحويلات الاجتماعية، وتقديم الإعانات للمواطنين، وزيادة التوظيف في القطاع العام) التي لا تعتبر فقط غير منتجة ولا تساهم في النمو الاقتصادي فحسب، بل تؤدي أيضا إلى ارتفاع الأسعار ومنه الرفع من معدلات التضخم. لذا نلاحظ الأثر الإيجابي والمعنوي لارتفاع أسعار النفط على التضخم في الجزائر.

أما بالنسبة للتأثير السلبي والمعنوي لانخفاض أسعار النفط على التضخم، فمن المحتمل أن يكون ذلك بسبب انخفاض أسعار النفط بشكل كبير خلال فترات معينة، فتجد الحكومة صعوبات في خفض حجم الإنفاق. ولتجنب الاضطرابات الاجتماعية والسياسية، أصبحت الحكومة تعاني من عجز في الميزانية ويتم تمويله عادة عن طريق الاقتراض المحلي أو الخارجي وسيستمر الإنفاق على هذه المشاريع حتى عندما تتخفض أسعار النفط.

فيما يخص باقي المتغيرات المفسرة، ففي كلا النموذجين المتماثل وغير المتماثل، تبين أن هناك علاقة طردية بين سعر الصرف الاسمي والرقم القياسي لأسعار المستهلك في المدى الطويل، أي أن انخفاض قيمة العملة الوطنية (الدينار الجزائري) يؤدي إلى ارتفاع مستوى الأسعار. إن عدم مرونة الجهاز الانتاجي وضعفه من حيث مسايرته للزيادة في الطلب على السلع المحلية، ومعاناته من عدم قدرته على رفع عرض هذه المنتجات نظرا لطاقته الانتاجية المحدودة، هذا الذي جعل الجزائر تلجأ إلى الاستيراد من أجل تغطية مشكل الفجوة الموجودة بين العرض والطلب. تراجع قيمة سعر الصرف الجزائري ساهم في الرفع من حجم الواردات والزيادة في معدلات التضخم، وبالرغم من ارتفاع كل من أسعار النفط واحتياطي الصرف الأجنبي، بقيت العملة الوطنية ضعيفة وهذا لعدم القدرة في تنويع الاقتصاد الجزائري (بوالكور وشرون، 2019) واعتماده على قطاع المحروقات كمصدر للنمو ولكسب العملة

هل يؤثر سعر النفط على معدل التضفم في الهزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

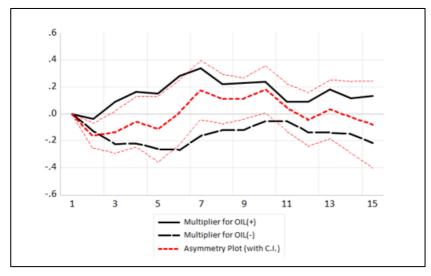
الصعبة مع كل ما يشهده هذا الأخير من تقلبات وتغيرات في الأسعار على مستوى الأسواق العالمية.


الناتج المحلي الاجمالي يؤثر إيجابا على الرقم القياسي لأسعار المستهلك، عكس عرض النقود الموسع الذي يسبب انخفاضا في معدل التضخم. اللوحة 3 و 4 توضحان نتائج اختبار اللاتماثل لـ Wald في المدى الطويل والقصير، حيث أكدت النتائج أن للصدمات النفطية تأثير غير متماثل على معدل التضخم، ففي الأجل الطويل والقصير ارتفاع أسعار النفط والمعبر عنه بالمتغير OIL_t لديه التأثير الأكبر على المتغير التابع والذي يمثل CPI النفط والمعبر عنه بالمتغير OIL_t لديه التأثير الأكبر على المتغير التابع والذي يمثل 10.98 مقارنة ب OIL_t والدليل على ذلك إحصائية الاختبار OIL_t الني بلغت 10.58 معنوية عند مستوى الدلالة 1% (10 %)، أي نقبل الفرضية البديلة التي تنص على أن العلاقة بين التضخم وأسعار النفط علاقة غير تناظرية أو غير خطية في الأمد الطويل (القصير).

أما اللوحة 5 والأخيرة توضح الاختبارات التشخيصية حيث اختبار LM يبين معنوية القيمة الاحصائية مما يدل على خلو النموذجين من مشكلة الارتباط التسلسلي. أيضا تباث التباين وذلك بالاعتماد على اختبار ARCH test، فقد تم قبول فرضية ثبات التباين انطلاقا من احتمال القيمة الإحصائية للاختبار وهي أكبر من مستوى المعنوية 1%. من جهة أخرى إحصائية JB جاءت معنوية وبالتالي نقبل الفرضية الصفرية القائلة بأن الأخطاء العشوائية تتوزع توزيعا طبيعيا. أيضا تم إجراء اختبار الفحص التشخيصي Diagnostic Check وتشير نتائج هذا الاختبار إلى رفض فرضية "وجود مشكلة خطأ تحديد النموذج"، ومنه النموذجان يأخذان الشكل الدالي المناسب ويحتويان على المتغيرات الملائمة.

كما أن اختبارات كل من المجموع التراكمي للبواقي المعاودة CUSUM والمجموع التراكمي لمربعات البواقي المعاودة CUSUMQ توضح أن النموذجين مستقران كما هو موضح من خلال الشكل (1) التالى:

معمد دحمانی، دنیا کرزابی، منال عطوشی


الشكل رقم (1): المجموع التراكمي للبواقي المعاودة وكذا المجموع التراكمي لمربعات البواقي المعاودة

المصدر: من حساب الباحثين باستخدام Eviews 12.

لتوضيح التأثير الغير متماثل قصير وطويل الأجل لصدمات أسعار النفط على المستوى العام للأسعار يمكن إيجاد المضاعفات الديناميكية. على المستوى الاقتصادي، تبرز المضاعفات سلوك تعديل التوازن قبل الصدمة إلى التوازن الجديد بعد الصدمة. كما أنها تمنحنا الوقت للتكيف مع التوازن الجديد (Charfeddine, 2020, p. 19).

الشكل رقم (2): الآثار التراكمية للصدمات النفطية الإيجابية والسلبية على المستوى العام للأسعار

المصدر: من مخرجات حسابات الباحثين باستخدام Eviews 12.

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

يوضح الشكل 2 المضاعفات الديناميكية لمدة 15 عاما، حيث يشير الخط الأسود المستمر إلى صدمة النفط الموجبة والخط الأسود المتقطع يدل على الصدمة السالبة. أظهرت النتائج أنه ابتداء من العام السادس هناك رد فعل أكبر للتغيرات الموجبة في أسعار النفط ويدوم ذلك حتى العام 13، وهذا ما يؤكد نتائج تقدير NARDL أن التضخم يتأثر بطريقة غير متماثلة بالصدمات النفطية، ويجدر الذكر بأن المضاعفات الديناميكية استغرقت ما بين 13 إلى 14 سنة لتتقارب نحو قيم معاملات طويلة الأجل.

4.2.3. اختبار Maki للتكامل المتزامن بوجود فواصل هيكلية

كما هو مبين على نطاق واسع في أدبيات الاقتصاد القياسي، تظهر السلاسل الاقتصادية والمالية عادة فواصل هيكلية بمرور الوقت. قد يجعل هذا نتائج اختبارات التكامل المشترك القياسية التقليدية غير موثوقة ومضللة (.Gregory et al.) من خلال هذه الورقة البحثية سنحاول تخطي هذه المشكلة من خلال الاستفادة من اختبار Maki للتكامل المشترك (2012) مع فواصل متعددة، والتي توفر إجراءات فعالة وقوية لاختبار العلاقات طويلة المدى بين المتغيرات في وجود فواصل هيكلية. لإجراء هذا النوع من اختبار التكامل المشترك، فإن أربعة نماذج انحدار اقترحها Maki (2012) بشرط أن تكون جميع المتغيرات المتكاملة من الدرجة الأولى، أي ا (1)، وهي على النحو التالي أن تكون جميع المتغيرات المتكاملة من الدرجة الأولى، أي ا (1)، وهي على النحو التالي (Balcilar, Usman, & Agbede, 2019)

$$Y_t = \pi + \sum_{i=1}^k \pi_i D_{i.t} + \beta' Z_t + \varepsilon_t$$
 (9) :النموذج الأول: $Y_t = \pi + \sum_{i=1}^k \pi_i D_{i.t} + \beta' Z_t + \ldots$:النموذج الثاني: $\sum_{i=1}^k \beta'_i Z_t D_{i.t} + \varepsilon_t$ (10)
$$Y_t = \pi + \sum_{i=1}^k \pi_i D_{i.t} + \beta' Z_t + \delta t + \ldots$$
 :النموذج الثالث:
$$\sum_{i=1}^k \beta'_i Z_t D_{i.t} + \varepsilon_t$$
 (11)
$$Y_t = \pi + \sum_{i=1}^k \pi_i D_{i.t} + \beta' Z_t + \delta t + \sum_{i=1}^k \delta_i t D_{i.t} + \ldots$$
 :النموذج الرابع:

 $\sum_{i=1}^{k} \beta'_{i} Z_{t} D_{i,t} + \varepsilon_{t}$

(0) هو المتغير الوهمي، حيث $D_{i.t}=1$ إذا كانت $D_{i.t}$ هو المتغير الوهمي، حيث $T_{B.i}$ إذا كان غير ذلك. يمثل $T_{B.i}$ نقاط التوقف في السلسلة بمرور الوقت، $T_{B.i}$ و

معمد دحمانی، دنیا کرزابی، منال عطوشی

 ε_t شير (1). تشير ε_t إلى متغيرات يجب أن تكون متكاملة من الدرجة (1). تشير عالم إلى حد الخطأ. تم اختبار الفرضية الصفرية لعدم وجود تكامل مشترك مقابل الفرضية البديلة لوجود تكامل مشترك بين المتغيرات الدراسة.

تشير المعادلة (9) إلى النموذج الأول ويشمل فاصل في القاطع وبدون اتجاه عام، أما النموذج الثاني (المعادلة 10) به تحولات في النظام أي فاصل في القاطع وفي المعاملات ولكن بدون اتجاه عام. في حين يتضمن النموذج الثالث (المعادلة 11) اتجاها بالإضافة إلى المعادلة (10)، أي فاصل في القاطع وفي المعاملات فقط، مع وجود اتجاه عام. أخيرا نموذج رابع (المعادلة 12) يتضمن فاصل في القاطع، وفي المعاملات وفي الاتجاه العام (Balcilar, Usman, & Agbede, 2019).

بعد التأكد من أن جميع المتغيرات متكاملة من الترتيب الأول (ماعد عرض النقود M2 والتي تم سحبها من النموذج)، يمكننا المضي قدما في تحليل التكامل المشترك لاختبار العلاقة طويلة المدى بين متغيرات الدراسة القياسية. نستخدم في دراستنا هذه التقنية الحديثة نوعا ما (2012، Maki) والتي تحدد علاقة التكامل المشترك في وجود ما يصل إلى خمس فترات راحة. تم عرض نتائج اختبار التكامل المشترك Maki (2012) في الجدول 8 التالى:

الجدول رقم (8): نتائج اختبار Maki للتكامل المشترك بفواصل هيكلية متعددة

$CPI_t = f(OIL_t, ECH_t, M2_t, GDP_t)$					
سنوات الانكسار الهيكلي	t الإحصائية (القيم الحرجة عند 5%)	المعدلات	عدد الفواصل		
1989	-3.18 (-5.65)	النموذج 0:			
1989	-3.98 (-5.91)	النموذج 1:	m ≤ 1		
1989	-3.22 (-6.52)	النموذج 2:			
1989	-4.11 (-6.91)	النموذج 3:			
1989، 1989	-7.01 * (-5.83)	النموذج 0:			
1989، 1989	-7.07 * (-6.05)	النموذج 1:	$m \le 2$		
1995 ، 1989	-7.01 (-7.24)	النموذج 2:			
1999، 1989	-4.987 (-7.63)	النموذج 3:			
2002 ،1995 ،1989	-7.32 * (-5.99)	النموذج 0:			
2003 ،1995 ،1989	-7.25 * (-6.21)	النموذج 1:	m ≤ 3		
2003 ،1995 ،1989	-7.32 (-7.80)	النموذج 2:			
1982، 1989، 1996	-4.98 (-8.25)	النموذج 3:			

هل يؤثر سعر النفط على معدل التضفم في الهزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

يتبع ...

$CPI_{t} = f(OIL_{t}, ECH_{t}, M2_{t}, GDP_{t})$						
سنوات الانكسار الهيكلي	t الإحصائية (القيم الحرجة عند 5%)	المعدلات	عدد الفواصل			
2002 ،1995 ،1989 ،1984	-7.32 * (-6.13)	النموذج 0:				
2003 ،1995 ،1989 ،1984	-7.25 * (-6.37)	النموذج 1:	m ≤ 4			
2003 ،1995 ،1989 ،1984	-7.32 (-8.29)	النموذج 2:				
2981، 1989، 1996، 2004	-4.987 (-8.87)	النموذج 3:				
2002 ،1995 ،1989 ،1984 ،1979	-7.32 * (-6.30)	النموذج 0:				
2003 ،1995 ،1989 ،1984 ،1979	-7.25 * (-6.49)	النموذج 1:	m ≤ 5			
2009 ،2003 ،1995 ،1989 ،1984	-7.32 (-8.86)	النموذج 2:				
2015 ،2004 ،1996 ،1989 ،1982	-4.987 (-9.48)	النموذج 3:				

المصدر: إعداد الباحثان باستخدام برنامج Gauss.

توضح نتائج اختبار التكامل المشترك Maki (2012) الواردة في هذا الجدول أن المتغيرات المقدرة في النموذج بينها تكاملا مشتركا في حالة وجود فواصل هيكلية، أي أن المتغيرات في علاقة طويلة المدى بوجود فواصل هيكلية، وهذا في النموذج الأول ويشمل فاصل في القاطع وبدون اتجاه عام وأيضا النموذج الثاني الذي به فاصل في القاطع وفي المعاملات ولكن بدون اتجاه عام.

بما أن هناك تكاملا مشتركا بين المتغيرات، أي رفض الفرضية الصفرية المتمثلة في عدم وجود تكامل مشترك. قمنا بعدة محاولات لتقدير النموذجين (النموذج 0 والنموذج 1) في وجود عدة فواصل (من فاصل هيكلي واحد إلى خمس فواصل) لكن بعد عدة محاولات للتقدير تبين أن النموذج 0 (النموذج الأول) والذي به تغيرات في الاتجاه والنظام مع خمس نقاط فواصل (1979، 1984، 1989، 1995 و 2002) هو النموذج الأفضل.

معمد دهمانی، دنیا کرزابی، منال عطوشی

CCR	DOLS	FMOLS	المتغيرات
-3.76	0.21	-4.15	С
0.36 *	0.34 *	0.35 *	OIL_t
0.82 *	0.88 *	0.84 *	ECH_t
0.42	1.05	0.36	GDP_t
1.40	-0.39	1.96	D ₁₉₇₉
4.72	-1.99	4.52	D ₁₉₈₄
4.54	6.36	3.43	D ₁₉₈₉
1.32	3.73	2.02	D ₁₉₉₅
19.76 **	12.68 **	19.02 **	D_{2002}
0.99	0.99	0.99	R^2
0.98	0.99	0.98	\bar{R}^2

المصدر: إعداد الباحثان باستخدام برنامج Eviews12.

يوضح الجدول 9 المعلمات المقدرة لنموذج التكامل المشترك للنموذج Z_t (النموذج Z_t المستقيل المستقيل التابع Z_t هو Z_t المستقيل النحو التالي: Z_t DOLS (FMOLS). المستقيل المستقيل المعاملات طهرت طردية وبعضها معنوية إحصائيا مع المعلمات المتوقعة. تحمل معلمات المتغيرات المفسرة الإشارة الموجبة، فكل من أسعار النفط، سعر الصرف والناتج المحلي الاجمالي يساهمون في ارتفاع معدل التضخم في الجزائر (مع أن معاملات الدراسة وهو ما توصائيا في النماذج الثلاثة)، هذه النتائج تؤكد طبيعة العلاقة ما بين متغيرات الدراسة وهو ما توصلنا اليه سابقا من خلال تطبيق نموذجين العلاقة ما ين معامل الحديد المصحح قريب من الواحد مما يدل على قوة وقدرة المتغيرات المستقلة في تفسير المتغير التابع.

4. الخاتمة

تطرقت في هذه الورقة البحثية الى دراسة تأثير التغيرات في أسعار النفط على معدل التضخم في الجزائر باستخدام نماذج الانحدار الذاتي الخطي الموزع المتأخر (المتماثل) ARDL ، وغير الخطي NARDL و MAKI للتكامل المشترك بوجود فواصل هيكلية

هل يؤثر سعر النفط على معدل التضفم في المزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المشترك

مع المقارنة بين النتائج المتحصل عليها. بينت النتائج أن بإمكان التغيرات في أسعار النفط أن تزيد من معدلات التضخم، أما فيما يخص تأثير الصدمات النفطية (نتائج NARDL)، فقد جاءت العلاقة طردية، بحيث في المدى الطويل وقوع صدمة موجبة في أسعار النفط بمقدار 1% تؤدي إلى ارتفاع معدل التضخم بنسبة 1.0%، أما حدوث صدمة نفطية سالبة بد 1% تعمل على خفض معدل التضخم بمقدار 0.14%، وكلا النتيجتين ذات دلالة احصائية عند مستوى 1%، بالإضافة إلى أن معدلات التضخم تتأثر بطريقة غير متماثلة بالصدمات النفطية سواء في المدى القصير أو الطويل، وذلك استنادا إلى نتائج اختبار Wald .

يعتبر استقرار الأسعار والحفاظ على التضخم ضمن نطاق معين ومعقول هدفا مهما لسياسة الاقتصاد الكلي لأنه يعكس قوة اقتصاد البلد وسلامته. وعلى العكس من ذلك، يؤدي عدم استقرار الأسعار إلى عدم اليقين، مما يؤدي إلى التشوهات وعدم الكفاءة في تخصيص الموارد. لذلك، فإن فهم ومعرفة الآثار التضخمية لصدمات أسعار النفط مسألة سياسية غاية في الأهمية حيث يمكن أن تساعد صانعي السياسات على تنسيق سياساتهم لاستيعاب صدمات أسعار النفط عند ظهورها. ومنه فإن فهم الارتباط الحقيقي بين أسعار النفط ومعدلات التضخم أمر ضروري جدا، حيث تحاول معظم السلطات النقدية إبقاء التضخم تحت السيطرة (استهداف التضخم). ومن ثم فإن المعرفة حول الآثار التضخمية لارتفاع أسعار النفط ستساعد السلطات النقدية في تبني السياسات المناسبة لاستيعاب هذه الصدمات . (2019).

تعتمد الجزائر كغيرها من الدول النفطية بشكل كبير على عائدات تصدير النفط وبالتالي تفتقر إلى التنويع الاقتصادي، حيث تعتمد بشكل كبير على العالم الخارجي لتزويدها بمعظم سلعها وخدماتها، ويظهر ذلك جليا من خلال معدل نمو الواردات خلال عقدين من الزمن. ارتفاع أسعار النفط ساهم في ارتفاع أسعار الواردات، وبهدف الحفاظ على استقرار الأسعار المحلية وتجنب الاضطرابات الاجتماعية، تدخلت الحكومة في كثير من الحالات بتقديم الدعم ورفع المساعدة الاجتماعية للأفراد وزيادة الأجور والرواتب. كل هذا ساهم في الرفع من حجم الإنفاق الحكومي والذي بدوره مارس ضغوطات كبيرة على الموازنة العامة. نتائج دراستنا تعزز فكرة أن الصدمات النفطية سواء الموجبة منها أو السالبة تساهم في التأثير أو التنبؤ بالتغير في مستوى الأسعار. لذلك، يتعين على حكومة البلد اتخاذ إجراءات سياسية جادة لتوسيع وتنويع اقتصاداتها. على سبيل المثال، قد تتبنى الحكومات إصلاحات هيكلية تعزز تطوير القطاع غير النفطي، وتشجع تنمية القطاع الخاص، والبحث عن حلول للرفع من فعالية القطاع العام، وتغير هيكل الحوافز للعمال، وتشجع التوظيف في القطاع الخاص.

معمد دحمانی، دنیا کرزابی، منال عطوشی

لم تتطور الدول الربعية والمصدرة للنفط بعد إلى مستوى حماية اقتصادها من الآثار الوخيمة المصاحبة لتقلبات أسعار النفط. بهدف تحقيق استقرار الأسعار، يجب أن تكون الإعانات جزء من أدوات السياسة المالية التي يجب أخذها بعين الاعتبار. بمعنى، يجب مواجهة الصدمة الإيجابية لأسعار النفط بإعانات من الحكومة. في حالة حدوث صدمة سلبية، على صناع القرار صياغة سياسات تسعى إلى زيادة الضرائب على المنتجات النفطية (Ibrahim, Bello, & Agboola, 2020).

تمثل أحد قيود هذه الدراسة في أنها استخدمت فقط مؤشر أسعار المستهلك كمقياس للتضخم ويمكن أن تركز أبحاثنا المستقبلية على استخدام متغيرات أخرى ليشمل مقاييس أخرى، مثل مؤشر أسعار المنتجين ومؤشر أسعار الواردات، مما سيسمح بفحص تأثيرات تغيرات أسعار النفط على مستويات مختلفة. القيد الآخر هو أننا قمنا بتضمين فقط متغير أسعار النفط في النموذج لذلك، قد نستخدم في الأبحاث المستقبلية متغيرات أخرى ذات الصلة بأسعار النفط كحساب صدماتها وفق طريقة Mork، طريقة Lee، طريقة المستفراج متغير آخر يعكس التقلبات في أسعار النفط. يمكن أيضا تمديد هذا العمل في عدة اتجاهات، على سبيل المثال تضمين أسعار الفائدة في التحليل حيث أنه سيساعد على قياس دور السياسة النقدية في تثبيت تأثيرات أسعار النفط.

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

المراجع العربية

الطاهر جليط، وعز الدين مخلوف. (2022). الصدمات النفطية وآثارها على فعالية السياسة النقدية في استهداف معدلات التضخم في الجزائر خلال الفترة 2000–2019: دراسة قياسية. مجلة دراسات العدد الاقتصادي، 13(1)، 19–35.

نورالدين بوالكور، عزالدين (2019). تحليل وقياس أثر سعر صرف الدينار الجزائري على معدل التضخم خلال الفترة 1970. 2017. ملفات الأبحاث في الاقتصاد والتسيير، المجلد 7، العدد 2، 164–188.

المراجع الأجنبية

Abu-Bakar, M., & Masih, M. (2018). Is the oil price pass-through to domestic inflation symmetric or asymmetric? new evidence from India based on NARDL.

Adebayo, T. S. (2020). Dynamic relationship between oil price and inflation in oil exporting economy: empirical evidence from wavelet coherence technique. Energy Economics Letters, 7(1), 12-22.

Adekoya, O. B., & Adebiyi, A. N. (2020). Oil price-inflation pass-through in OECD countries: the role of asymmetries, impact of global financial crisis and forecast evaluation. International Journal of Energy Sector Management.

Albulescu, C. T., Oros, C., & Tiwari, A. K. (2017). Oil price—inflation pass-through in Romania during the inflation targeting regime. Applied Economics, 49(15), 1527-1542. https://doi.org/10.1080/00036846.2016.1221041

Attouchi, M. (2021). An Application of ARDL Bounds Testing Approach to the Estimation of Level Relationship between Inflation, Economic Activity and Oil Price in Algeria. Journal of Contemporary Business and Economic Studies Vol, 4(1); 169-179.

Ayisi, R.K. (2021), "The asymmetry effect of oil price changes on inflation, and the welfare implication for Ghana", African Journal of Economic and Management Studies, Vol. 12 No. 1, pp. 55-70. https://doi.org/10.1108/AJEMS-01-2020-0009.

Bala, U., & Chin, L. (2018). Asymmetric impacts of oil price on inflation: An empirical study of African OPEC member countries. Energies, 11(11), 3017. https://doi.org/10.3390/en11113017.

محمد دحمانی، دنیا کرزابی، منال عطوشی

- Balcilar, M., Usman, O., & Agbede, E. A. (2019). Revisiting the exchange rate pass-through to inflation in Africa's two largest economies: Nigeria and South Africa. African Development Review, 31(2), 245-257. https://doi.org/10.1111/1467-8268.12381
- Balcilar, M., Uwilingiye, J., & Gupta, R. (2018). Dynamic relationship between oil price and inflation in South Africa. The Journal of Developing Areas, 52(2), 73-93. https://doi.org/10.1353/jda.2018.0023.
- Banerjee, A., Dolado, J., & Mestre, R. (1998). Error-correction mechanism tests for cointegration in a single-equation framework. Journal of time series analysis, 19(3), 267-283. https://doi.org/10.1111/1467-9892.00091
- Baz, K., Xu, D., Ali, H., Ali, I., Khan, I., Khan, M. M., & Cheng, J. (2020). Asymmetric impact of energy consumption and economic growth on ecological footprint: using asymmetric and nonlinear approach. Science of the total environment, 718, 137364. https://doi.org/10.1016/j.scitotenv.2020.137364
- Benameur, A., Belarbi, Y., & Toumache, R. (2020). The macroeconomic effects of oil prices fluctuations in Algeria: A SVAR approach. Les Cahiers du Cread, 36(3), 59-82. Retrieved from https://www.ajol.info/index.php/cread/article/view/202183
- Broock, W. A., Scheinkman, J. A., Dechert, W. D., & LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric reviews, 15(3), 197-235. https://doi.org/10.1080/07474939608800353
- Çatik, A. N., & Önder, A. Ö. (2011). Inflationary effects of oil prices in Turkey: a regime-switching approach. Emerging Markets Finance and Trade, 47(5), 125-140. https://doi.org/10.2753/REE1540-496X470506
- Charfeddine, L. &. (2020, February). Short-and long-run asymmetric effect of oil prices and oil and gas revenues on the real GDP and economic diversification in oil-dependent economy. Energy Economics, 86. https://doi.org/10.1016/j.eneco.2020.104680
- Deluna Jr, Roperto S., Jeanette Isabelle V. Loanzon, and Virgilio M. Tatlonghari. "A nonlinear ARDL model of inflation dynamics in the Philippine economy." Journal of Asian Economics 76 (2021): 101372. https://doi.org/10.1016/j.asieco.2021.101372
- Goh, L., Siong, H., & Irwan, T. (2020). Do oil price fluctuations affect the inflation rate in Indonesia asymmetrically? The Singapore Economic Review, 7(1), 1-21. https://doi:10.1142/S0217590820460030

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل الشت

Gregory, A. W., & Hansen, B. E. (1996). Practitioners corner: tests for cointegration in models with regime and trend shifts. Oxford bulletin of Economics and Statistics, 58(3), 555-560. https://doi.org/10.1111/j.1468-0084.1996.mp58003008.x

Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. Journal of Monetary Economics, 38(2), 215–220. https://doi.org/10.1016/s0304-3932(96)01282-2

https://mpra.ub.uni-muenchen.de/87569 /

Husaini, D. H., & Lean, H. H. (2021). Asymmetric impact of oil price and exchange rate on disaggregation price inflation. Resources Policy, 73, 102175. https://doi.org/10.1016/j.resourpol.2021.102175

Ibrahim, R., Bello, A. K., & Agboola, a. Y. (2020). A new insight into oil price-inflation nexus. Resources Policy, 68, 101804. https://doi.org/10.1016/j.resourpol.2020.101804

Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of up to m structural breaks. Journal of Time Series Analysis, 26(1), 123-133. https://doi.org/10.1111/j.1467-9892.2005.00393.x

Köse, N., & Ünal, E. (2021). The effects of the oil price and oil price volatility on inflation in Turkey. Energy, 226, 120392. https://doi.org/10.1016/j.energy.2021.120392

Lacheheb, M., & Sirag, A. (2019). Oil price and inflation in Algeria: A nonlinear ARDL approach. The Quarterly Review of Economics and Finance, 73, 217-222. https://doi.org/10.1016/j.qref.2018.12.003

Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange multiplier unit root test with two structural breaks. Review of economics and statistics, 85(4), 1082-1089. https://doi.org/10.1162/003465303772815961

Lu, W. C., Liu, T. K., & Tseng, C. Y. (2010). Volatility transmissions between shocks to the oil price and inflation: evidence from a bivariate GARCH approach. Journal of Information and Optimization Sciences, 31(4), 927-939. https://doi.org/10.1080/02522667.2010.10700003

Maki, D. (2012). Tests for cointegration allowing for an unknown number of breaks. Economic Modelling, 29(5), 2011-2015. https://doi.org/10.1016/j.econmod.2012.04.022

Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., & Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy

معمد دحمانی، دنیا کرزایی، منال عطوشی

- consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161-174. https://doi.org/10.1016/j.jclepro.2019.04.281
- Mork, K. A. (1989). Oil and the macroeconomy when prices go up and down: an extension of Hamilton's results. Journal of political Economy, 97(3), 740-744. https://www.jstor.org/stable/1830464
- Mujtaba, A., & Jena, P. (2021). Analyzing asymmetric impact of economic growth, energy use, FDI inflows, and oil prices on CO 2 emissions through NARDL approach. Environmental Science and Pollution Research, 28, 30873–30886. https://doi.org/10.1007/s11356-021-12660-z
- Nazariyan, R., & Amiri, A. (2014). Asymmetry of the oil price Pass-through to inflation in Iran. International Journal of Energy Economics and Policy, 4(3), 457.
- Nusair, S. A. (2019). Oil price and inflation dynamics in the Gulf Cooperation Council countries. Energy, 181, 997-1011. https://doi.org/10.1016/j.resourpol.2021.102014
- Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616
- Raheem, I. D., Bello, A. K., & Agboola, Y. H. (2020). A new insight into oil price-inflation nexus. Resources Policy, 68, 101804. https://doi.org/10.1016/j.resourpol.2020.101804
- Sakashita, Y., & Yoshizaki, Y. (2016). The effects of oil price shocks on IIP and CPI in emerging countries. Economies, 4(4), 20. https://doi.org/10.3390/economies4040020
- Salisu, A. A., Isah, K. O., Oyewole, O. J., & Akanni, L. O. (2017). Modelling oil price-inflation nexus: The role of asymmetries. Energy, 125, 97-106. https://doi.org/10.1016/j.energy.2017.02.128
- Sek, S. K. (2017). Impact of oil price changes on domestic price inflation at disaggregated levels: Evidence from linear and nonlinear ARDL modeling. Energy, 130, 204-217. https://doi.org/10.1016/j.energy.2017.03.152.
- Shahbaz, M., Hoang, T. H. V., Mahalik, M. K., & Roubaud, D. (2017). Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis. Energy Economics, 63, 199-212. https://doi.org/10.1016/j.eneco.2017.01.023

هل يؤثر سعر النفط على معدل التضفم في الجزائر؟ نظرة جديدة على أساس اختبار NARDL وMAKI للتكامل المسترك

- Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in honor of Peter Schmidt (pp. 281-314). Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8008-3_9
- Shitile, T. S., & Usman, N. (2020). Disaggregated Inflation and Asymmetric Oil Price Pass-Through in Nigeria. International Journal of Energy Economics and Policy, 10(1), 255.
- Thach, N. N. (2019, January). Impact of the world oil price on the inflation on vietnam—a structural vector autoregression approach. In International Econometric Conference of Vietnam (pp. 694-708). Springer, Cham. https://doi.org/10.1007/978-3-030-04200-4_48
- Xiang, L., Zhang, H., Gao, K., & Xiao, Z. (2021). Oil volatility–inflation pass through in China: Evidence from wavelet analysis. Energy Reports, 7, 2165-2177. https://doi.org/10.1016/j.egyr.2021.04.021
- Zakaria, M., Khiam, S., & Mahmood, H. (2021). Influence of oil prices on inflation in South Asia: Some new evidence. Resources Policy, 71, 102014. https://doi.org/10.1016/j.resourpol.2021.102014
- Zhao, L., Zhang, X., Wang, S., & Xu, S. (2016). The effects of oil price shocks on output and inflation in China. Energy Economics, 53, 101-110.
- Zhao, L., Zhang, X., Wang, S., & Xu, S. (2016). The effects of oil price shocks on output and inflation in China. Energy Economics, 53, 101-110. https://doi.org/10.1016/j.eneco.2014.11.017
- Živkov, D., Đurašković, J., & Manić, S. (2019). How do oil price changes affect inflation in Central and Eastern European countries? A wavelet-based Markov switching approach. Baltic Journal of Economics, 19(1), 84-104. https://doi.org/10.1080/1406099X.2018.1562011

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيزي خضر العكارى*

ملخص

ازدادت الأبحاث عن حالة عدم التأكد في السياسة الاقتصادية كعامل مؤثر في القرارات الاقتصادية خلال السنوات الأخيرة، حيث أدرجت معظم الدول مؤشر عدم التأكد في السياسة الاقتصادية إلى دورياتها الإحصائية كمؤشر هام يدل على صحة الاقتصاد. لذا قدّم هذا البحث إطاراً لقياس عدم التأكد في السياسة الاقتصادية في سورية وفق منهج التقلب العشوائي، على اعتبار أنّ عدم التأكد عامل كامن يقود التقلبات المشتركة والخاصة لمجموعة من المتغيرات الاقتصادية والمالية باستخدام نموذج(Bayesian Stochastic Volatility). بيّنت النتائج ارتفاعاً في حالة عدم التأكد في السياسة الاقتصادية خلال الفترات المقابلة للأحداث الاقتصادية والسياسية في سورية، مما يعكس عدم وضوح السياسة الاقتصادية من قبل المصرف المركزي وصانعي السياسات، وبالتالي صعوبة معرفة وتوقع اتجاه تطور الاقتصاد خلال المرحلة المقبلة.

Measuring Economic Policy Uncertainty in Syria Using Bayesian Stochastic Volatility Model

Khder Alakkari Abstract

Research on the state of economic policy uncertainty as an influencing factor in economic decisions has increased in recent years. Most countries have included economic policy uncertainty index in their statistical periodicals as an important indicator of the health of the economy. Therefore, this research provided a framework for measuring economic policy uncertainty in Syria according to stochastic volatility approach, considering the uncertainty as a latent variable that leads common and idiosyncratic volatility for a set of economic and financial variables using Bayesian Stochastic Volatility model. The results showed an increase in economic policy uncertainty during the periods corresponding to economic and political events in Syria. This reflects the lack of clarity in economic policy by the central bank and policy makers, and thus the difficulty of knowing and predicting the trend of the economy's development during the next stage.

^{*} دكتور محاضر في الإحصاء - كلية الاقتصاد - جامعة طرطوس - الجمهورية العربية السورية، البريد الالكتروني: khderalakkari1990@gmail.com

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيري

1. مقدمة

تُعدُ الأحداث المستقبلية، غير مؤكدة فهي تحتوي على جزء من الشك. يُطلق على حالة الشك حول الوضع المستقبلي بعدم التأكد (Uncertainty)، حيث أنّ مصطلح عدم التأكد فيزبائي الأصل وبُعتبر من أهم مبادئ نظرية الكم بعد أن صاغه العالم الألماني Heisenberg عام 1927. اهتمَ علماء الاقتصاد بهذا المصطلح وبدأوا باستخدامه بعد أزمة (الركود الكبير) التي عصفت بالولايات المتحدة والاتحاد الأوروبي والاقتصاد العالمي عامي 2008 و 2009، وأدرجت معظم الدول مؤشر عدم التأكد الاقتصادي إلى دورياتها الرئيسية بهدف تقديم وصف آنى ومستقبلي لصحة الاقتصاد، حيث أنه من المفترض وحسب العالم الاقتصادي الأميركي (Friedman) أن تعقب الأزمة فترات تعافِ سربعة، لكن جاء هذا التعاف في الاقتصادات بطيئاً وضعيفاً ليؤدي الأمر إلى صياغة نظربة جديدة تُفسر هذه الحالة وهي نظرية عدم التأكد في السياسة الاقتصادية. هناك عدة عوامل تدعم الخط المتصاعد من الأدبيات التي تضمنت تحليل وقياس هذه الحالة: أهمها أنّ عدم التأكد عامل رئيسي للركود، وبؤثر على مختلف الأنشطة الاقتصادية، حيث يتباطأ تعافى الاقتصاد عندما يصبح المستثمرون والمستهلكون ورجال الأعمال غير واثقين من المستقبل. وعلى الرُغم من صعوبة قياس أجواء عدم التأكد لأنه ليس بالمتغير الذي يُمكن رصده (متغير كامن إحصائياً)، فقد تمكنت الدراسات البحثية التي أُجريت مؤخراً من وضع عدد من المقاييس مستخدمة بذالك عدداً من المناهج الإحصائية. تشمل مناهج قياس حالة عدم التأكد في السياسة الاقتصادية بشكل أساسى: (المنهج القائم على التمويل)، حيث يتم استخدام طرق إحصائية لمعالجة المعلومات المالية الناتجة عن تقلبات سوق الأوراق المالية (Bloom, 2009). (المنهج القائم على التوقعات)، حيث يتم تقدير عدم التأكد من خلال المنهج القائم على مفهوم القدرة بالتنبؤ بالاقتصاد وقياس الاختلاف بين التوقعات (Juardo et al, 2015). (المنهج القائم على الأخبار (الأكثر اتباعاً)) وباستخدامه يمكن تمثيل درجة عدم التأكد في فترة معينة بتردد مجموعة من الكلمات المتعلقة بعدم التأكد في المقالات الصحفية (Baker, Bloom and Davis, 2013). يهدف هذا البحث إلى إعطاء صورة واضحة عن حالة عدم التأكد في السياسة الاقتصادية في سورية، وذلك من خلال قياس عدم التأكد في السياسة الاقتصادية مستمدة من معلومات الاقتصاد الكُلي والمالي ضمن إطار نموذج التقلب العشوائي البيزي، تحت افتراض أنّ عدم التأكد مؤشر كامن يقود التقلبات المشتركة والفردية للمتغيرات الاقتصادية. وذلك مع عدم وجود مؤشر يبيّن حالة عدم التأكد في السياسة الاقتصادية في سورية حيث أدرجت عدد كبير من الدول مؤشر عدم التأكد في السياسة الاقتصادية إلى دورياتها الإحصائية كمؤشر هام يدل على صحة الاقتصاد.

1.1 الدراسات السابقة

قدّم Bloom الأوراق المالية دليل تجريبي على ارتباط تقلب سوق الأوراق المالية مع عدم التأكد في الولايات المتحدة الأميركية. وذلك من خلال دراسة الارتباط بين تقلب مؤشر سوق الأوراق المالية والتشتت العرضي المقطعي لنمو الأرباح على مستوى الشركات (الانحرافات المعيارية)، حيث بيّنت النتائج وجود ارتباط مرتفع بين التقلبات المرتفعة والتشتت العرضي. ولتقييم تأثير صدمات عدم التأكد على النتائج الاقتصادية الحقيقية، تمّ تقدير نموذج VAR الهيكلي لمجموعة من البيانات الشهرية خلال الفترة 1962—2008 والتي تشمل معدلات (متوسط الدخل، أسعار المستهلك، أسعار الفائدة، الإنتاج الصناعي، التوظيف)، تمّ تضمين مؤشر سوق الأوراق المالية VIX باعتباره المتغير الأول في نموذج الصدمات الكبيرة (الاقتصادية والسياسية) (صدمة أوبك – أسعار النفط)، هجمات 11 أيلول. وتؤدي صدمات عدم التأكد إلى انخفاض سريع في الناتج المحلي الإجمالي والعمالة، هذا يحدث لأن ارتفاع درجة عدم التأكد تجعل الشركات وخاصة المؤقتة توقف استثماراتها وتوظيفها للعمالة.

قام Pastor and Veronesi في السياسة الاقتصادية من خلال دراسة آثار التغييرات في سياسة الحكومة على أسعار الأسهم بالاعتماد على نموذج الأصول الرأسمالية، بحيث يتم التمييز بين نوعين من عدم التأكد: النوع الأول عدم التأكد بشأن السياسة، تتعلق بالتأثير غير المؤكد لسياسة حكومية معينة على ربحية القطاع الخاص، النوع الثاني يسمى عدم التأكد السياسي، أي هناك عدم تأكد بشأن ما ستفعله الحكومة وما هو تأثير فعله. توصل البحث إلى أنّ كلا نوعي عدم التأكد يؤثر على أسعار الأسهم بطرق مهمة، حيث تتخفض أسعار الأسهم عند الإعلان عن التغييرات في السياسة، وهذا الانخفاض يكون كبيراً إذا كان عدم التأكد بشأن سياسة الحكومة كبيراً.

اقترح Basu and Bundick تحليل كمي لتأثير صدمات عدم التأكد، بمعايرة ديناميكية عشوائية لنموذج التوازن العام (DSGE) مع نموذج تراكم رأس المال، بحيث يتم التعبير عن صدمات عدم التأكد، من خلال مؤشر تقلبات أسعار بورصة شيكاغو (VXO). أظهرت النتائج بأنّ صدمات عدم التأكد تؤدي إلى تقلصات في الإنتاج وجميع

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيري

مكوناته، حيث أنّ الانخفاض في الإنتاج والاستهلاك والاستثمار في النموذج متناسق، كما تمّ التوصل من خلال النموذج أنّ الارتفاع الحاد في عدم التأكد خلال الأزمة المالية في أواخر 2008 هي نفسها الفترة عندما يحدد الاحتياطي الفيدرالي سعر فائدة قريب من الصفر، وهو ما قد يكون عاملاً هاماً في توضيح الانخفاض الكبير في الإنتاج منذ ذلك الوقت.

طوّر Baker, et al) مؤشر جديد لعدم التأكد في السياسة الاقتصادية في الولايات المتحدة الأميركية، وذلك من خلال إدراج مؤشر يعتمد على تكرار إشارات الصحف إلى مصطلح عدم التأكد من السياسة، بالإضافة لـ5000 مراجعة للقراءات البشرية لمقالات الصحف التي تحتوي على مصطلح عدم التأكد، وتقدير نموذج VAR لمجموعة من البيانات الشهرية وذلك لدراسة آثار عدم التأكد الاقتصادي على الاستثمار والتوظيف. توصل البحث إلى أنّ الارتفاع في مؤشر عدم التأكد يُنذر بحدوث انخفاضات في الاستثمار والإنتاج والعمالة، كما توصل البحث إلى أنّ مؤشر عدم التأكد يرتفع خلال فترات الكساد.

استخدم كل من (Ozturk and Sheng) عام 2017 بيانات الاستقصاء الفردي من التنبؤات المتفق عليها خلال الفترة (1989–2014) حيث تم تطوير مقاييس شهرية لمتغير عدم التأكد في الاقتصاد الكلي تغطي 45 بلداً، وتطوير مقياس لعدم التأكد العالمي الذي يمثل المتوسط المرجح لأوجه عدم التأكد الخاصة بكل بلد، وتم تضمين متغير عدم التأكد إلى التنبؤ من خلال نموذج تسعير الأصول الرأسمالية. وباستخدام نموذج XAR وجد البحث أنّ الصدمات الناجمة عن عدم التأكد الخاص بالبلدان ترتبط بانخفاض كبير ومطول في النشاط الاقتصادي، وتنطبق هذه النتيجة على الاقتصاد العالمي: فصدمات عدم التأكد العالمية لها آثار طويلة الأجل على الإنتاج الصناعي والبطالة، وشدّد البحث من خلال النتائج بأنه من الضروري إجراء بحوث مستقبلية لقياس الآثار الاقتصادية لعدم التأكد وتحليل انتقال صدمات عدم التأكد عبر البلدان.

هدفت هذه الدراسة إلى قياس عدم التأكد في السياسة الاقتصادية في سورية، انطلاقاً من النظرية الاقتصادية لعدم التأكد سيتم استخدام نموذج التقلب العشوائي البيزي الذي يأخذ خصائص التقلبات الفردية والمشتركة للمتغيرات الداخلة في قياس المؤشر وهو ما يعطي هذه الدراسة ميزة عن الدراسات السابقة.

2. منهجية البحث والأدوات

1.2 منهجية البحث

يعتمد البحث على منهج التحليل الإحصائي لقياس مؤشر عدم التأكد في السياسة الاقتصادية، ضمن إطار الاستدلال البيزي (Bayesian Inference) يعتمد على بناء نموذج (Stochastic Volatility) لمجموعة من المتغيرات الاقتصادية والمالية، التي تقودها تقلبات عشوائية من قبل عامل غير قابل للرصد (Volatility) يُسمى عدم التأكد في السياسة الاقتصادية، بحيث يتم تعميم متغير يخضع لتوزيع احتمالي معين من أحادي البعد إلى أعلى الأبعاد في فضاء احتمالي باستخدام سلسلة ماركوف مونت كارلو (Markov Chain Monte Carlo) بالاعتماد على لغة البرمجة الإحصائية .R

2.2 الاستدلال البيزي

وضعت نظرية بيز (Bayes Theorem) والتي تُعدُ أساس الاستدلال الإحصائي البيزي (Bayesian Inference) من قبل الكاهن البريطاني توماس بيز (1973)، الذي قدّم أول معادلة تسمح بإدراج معتقداتنا الشخصية، أو معلوماتنا المكتسبة من التجربة لحساب احتمال وقوع حدث ما، وهو ما يختلف عن الاستدلال التكراري (Frequency Inference) الذي يفترض أنّ احتمال وقوع حدث يُمثل مقياس تكرار وقوعه عدد من المرات. رياضياً يُمكن تعريف نظرية بيز وفق القانون:

$$P(A/B) = \frac{P(A) \times P(B/A)}{P(B)}$$
 (1)

بفرض A و B حدثين ضمن فضاء العينة، نُعبر عن P(A/B) احتمال تحقق الحدث A بشرط تحقق الحدث B. وبالتالي وفقاً لذلك يمكننا تعريف المنهج البَيزي على أنه إجراء رياضي يطبق الاحتمالات على المشاكل الإحصائية ويوفر للباحثين الأدوات اللازمة لتحديث معتقداتهم وفق البيانات الجديدة، جزء مهم من المنهج البَيزي هو إنشاء المعلمات والنماذج، حيث أن النماذج هي الصيغ الرياضية للأحداث المرصودة، والمعلمات هي العوامل في النماذج التي تؤثر على البيانات المرصودة. لتحديد نموذجنا بشكل صحيح نحتاج إلى نموذجين رياضيين قبل البدء، أحدهما لتمثيل دالة الاحتمال (Likelihood function)

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيري

والآخر لتمثيل توزيع المعتقدات السابقة (prior distribution)، ينتج عن الأمرين التوزيع اللاحق (posterior distribution). ومنه يُمكننا كتابة المعادلة السابقة وفق:

$$Posterior = \frac{Prior \times Likelihood}{Data}$$
 (2)

يشير Prior (التوزيع السابق): إلى أي أفكار أو معلومات مسبقة نمتلكها حول الظاهرة المدروسة.

يشير Likelihood (دالة تعظيم الاحتمال): إلى احتمال مراقبة الظاهرة المدروسة (المشاهدات أو البيانات Data) مع العلم أن معلوماتنا السابقة Prior صحيحة.

يشير Posterior (التوزيع اللاحق): إلى تحديث الاحتمال الأولي Prior مشروط ما لاحظناه Data.

يتم تحديد التوزيع السابق Prior في ضوء المعلومات التي يمتلكها الشخص حول كمية ما غير معروفة، قد تكون الكمية الغير معروفة معلمة للنموذج أو متغير كامن بدلاً من متغير يمكن ملاحظته (latent Variable)، يمكن إنشاء التوزيع السابق وفق عدد من الطرق بما يتوافق مع معلوماتنا حول الظاهرة المدروسة (التوزيع الطبيعي – توزيع ذي الحدين بوزيع غاما – توزيع بواسون) وذلك بما يدعم البيانات وبالتالي التقدير حول الظاهرة المدروسة وهو أهم ما يميز النماذج الإحصائية التي تعتمد الاستدلال البيزي بدلاً من التكراري، كما يمكن اختيار توزيع سابق (غير معلوماتي) في حال عدم وجود أي معلومات عن الظاهرة المدروسة.

- تقدير التوزيع اللاحق Posterior

تُعدُ البرمجة الحاسوبية عنصراً رئيسياً في أي تحليل إحصائي، ومنذ أواخر عام 1980، كان تطبيق الأساليب البيزية مقصوراً على المشكلات الصغيرة بحيث يكون عدد المعلمات صغيراً بما يكفي للسماح بالتكامل العددي، ومع ظهور أساليب Markov Chain، التي تمّ تطويرها مع نهاية 1970، ازداد استخدام الأساليب البيزية بشكل كبير لأنه أصبح من الممكن تقدير نماذج تعكس الواقع مع استخدام مجموعات كبيرة ومعقدة من البيانات ومع ما يرافقها من مشاكل (Simpson et al., 2017).

تعتمد طرق MCMC على سلاسل ماركوف ومحاكاة مونت كارلو، سلاسل ماركوف: عملية عشوائية تملك خاصية Markov حيث أنّ معرفة السلوك المستقبلي في كل لحظة t يتم من خلالها فقط مهما قمنا بجمع معلومات في الماضي:

$$P(X_{n+1}=K/X_n=K_n,X_{n-1}=K_{n-1},\ldots,X_1=K_1)=P(X_{n+1}=K/X_n=K_n) \ \ (3)$$

حيث أنّ احتمال $K=X_{n+1}$ ، وبالتالي من السمات المهمة لسلاسل ماركوف أنها بلا ذاكرة، كل ما قد تحتاجه للتنبؤ بالحدث التالي متاح في الحالة الحالية، ولا توجد معلومات جديدة تأتي من معرفة تاريخ الأحداث.

تُشير محاكاة مونت كارلو إلى تقنية لاستخدام عينات عشوائية بشكل متكرر للحصول على إجابة رقمية، ويمكن اعتبار مونت كارلو إجراء العديد من التجارب في كل مرة يتم فيها تغيير المتغيرات في النموذج ومراقبة الاستجابة، وذلك باختيار قيم عشوائية ضمن نطاق القيم الممكنة للمعلمات، ومن أجل حساب قيم معلمة يرمز لها β (Martin et al., 2011):

$$\beta = \sum_{x \in \Omega} p(x)\beta(x) \tag{4}$$

حيث $\beta(x)$ تمثل قيمة المعلمة β في الحالة $\beta(x)$ مقياس إحصائي معياري، α الفضاء الذي تتم فيه عملية الجمع أو التكامل. في معظم الحالات لا يمكن حساب التوزيع اللاحق بشكل مباشر كما رأينا سابقاً، لذلك يتم أخذ عينة عشوائية من الفضاء الاحتمالي باستخدام MCMC وتقريب حساب متوسط وتباين العينة (Shaver, 2017).

فمثلاً في حال أردنا تقدير توزيع لاحق لمعلمة العينة، فإنّ سحوبات (draws) ساعد على تقريب التوزيع المناسب كما رأينا سابقاً، فمع نموذج يتكون من متغير واحد (معلمة تقدير واحدة)، يُمكن تقريب التوزيع اللاحق من خلال الرسم البياني للتوزيع اللاحق.

ومع نموذج يتكون من عدة متغيرات يتم حساب التوزيع الهامشي (Marginal) اللاحق الشرطي للعينة، حيث أنّ عملية السحب باستخدام عينات MCMC يُنتج تلقائياً عينات من التوزيع الهامشي تُمثل عدم التأكد في المعلمات الأُخرى، بالإضافة إلى التوزيع الهامشي، يمكن استخدام عينات MCMC لتقدير التوزيع اللاحق للمعلمات المحددة (Sampling)

قياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيري

كمتحولات للمعلمات الأصلية بحيث يكون توزيعها المتوازن مطابق للتوزيع الاحتمالي المجهول المراد محاكاته.

عندما نستخدم طريقة MCMC لنقريب التكامل متعدد الأبعاد يكون لدينا مسير عشوائي متعدد، كل نقطة داخل المسير تعتبر نقطة تُقرب من قيمة التكامل، من الممكن أن يأخذ المسير عدة خطوات في المنطقة باحثاً عن نقاط ذات قيمة عالية لقيمة التكامل. من أساليب السير العشوائي المستخدمة:

1. طريقة جبس (Gibbs sampling)

يشيع استخدام أخذ عينات Gibbs كوسيلة للاستدلال البيزي، وهي خوارزمية عشوائية تُستخدم للحصول على سلسلة من الملاحظات لتقريب التوزيع اللاحق متعدد المتغيرات، عندما يكون من الصعب أخذ العينات بشكل مباشر، يُمكن استخدام هذا التسلسل لتقريب التوزيع المشترك (إنشاء رسم بياني)، أو تقريب التوزيع الهامشي لبعض المجموعات الفرعية للمتغيرات (المتغيرات الكامنة)، حيث أنه عادةً ما تتوافق بعض المتغيرات مع الملاحظات التي تكون قيمها معروفة، وبالتالي لا تحتاج إلى أخذ عينات منها. إنّ أخذ عينات الملاحظات التي تكون قيمها معروفة، وبالتالي لا تحتاج إلى أخذ عينات من بداية السلسلة بدقة التوزيع Gibbs يولد سلسلة من عينات Markov، قد لا تمثل العينات من بداية السلسلة بدقة التوزيع المطلوب لذلك يتم اهمالها ويُطلق عليها بفترة الاحتراق (burn—in)، وبالتالي فإنّ استخدام سلسلة أطول (عدد تكرارات أكبر ((iterations) تؤدي إلى تقديرات أفضل للتوزيع اللاحق، ولذلك يجب تطبيق التخفيف (thinning) فقط عند تقييد ذاكرة الكمبيوتر (Eaton, 2012).

2. طریقة (Metropolis-Hastings)

تتطلب كل خطوة في طريقة Gibbs أخذ عينة من التوزيع الشرطي الكامل لمجموعة المعلمات مشروطة بجميع المعلمات الأُخرى، حيث تكون التوزيعات المشروطة مترافقة Metropolis-Hastings للحصول على سلسلة من العينات العشوائية من توزيع الاحتمال الذي يصعب تحديده، حيث تعمل عن طريق إنشاء تسلسل من قيم العينة وتجعل توزيع القيم أقرب إلى التوزيع المطلوب، ويُستخدم هذا التسلسل خاصة عندما يكون عدد الأبعاد مرتفعاً (yildirim, 2012).

3.2 خصائص نموذج التقلب العشوائي البيزي

تتواجد تطبيقات التقلب العشوائي بشكل واسع في مجالات الاقتصاد الكُلي والمالي، وخصوصاً في المجالات التي يتم فيها تقدير عدم التأكد (Aguilar and West, 2000) وخصوصاً في المجالات التي يتم فيها تقدير عدم التأكد (Zhou, Nakajima, and West, 2014) يعد النقدير الإحصائي لهذه النماذج صعباً يفسر عدم اتساع مجالها التطبيقي (مثل نماذج تمّ حل المشكلتين من خلال اقتراح مخطط الإحصائية التي تتعامل مع تقدير هذه النماذج تمّ حل المشكلتين من خلال اقتراح مخطط تقدير باستخدام خوارزمية سلسلة ماركوف مونت كارلو (Bayesian Inference) من قبل (MCMC (R Core Team) عن قبل (Factor Stochvol ليبيزي (and Schnatter, 2017).

تتمثل الصعوبة الرئيسية المرافقة للتقدير المشترك ضمن النموذج، في العدد المرتفع نسبياً من المجاهيل مقارنة بعدد المشاهدات، فبفرض m تدل على البُعد، فإنّ مصفوفة التباين المشترك المقابلة لديها m(m+1)/2 درجة حرية، وهو مصطلح تربيعي في m. مما يؤدي إلى مشكلة الأبعاد العالية (Curse Of Dimensionality) إحدى الطرق المستخدمة لمعالجة هذه المشكلة هي استخدام العوامل الكامنة (Kastner, 2019).

تُجسد العوامل الكامنة فكرة أنه حتى الأنظمة ذات الأبعاد العالية تُدار بواسطة مصادر قليلة من العشوائية. تتحكم هذه المصادر القليلة للعشوائية في عدد قليل من العوامل، والتي بدورها تفسر التفاعل بين الملاحظات، كما توفر هذه النماذج أداة فعالة لتقدير مصفوفة التباين الديناميكي، كما تسمح بتقليص عدد المجاهيل.

يأخذ نموذج العامل الكامن المؤلف من r عامل التقسيم التالي:

$$\Sigma_t = \widecheck{\Sigma_t} + \ \overline{\Sigma_t} \tag{5}$$

حيث تُعطى رتبة المصفوفة بـ: r < m هي مصفوفة قطريــة تحتوي على تباينــات الأخطــاء الخاصــة، تؤدي الرتبـة على المصفوفــة المتماثلــة Σ_t إلــى mr - r(r-1)/2 عناصر حريــة: $\Sigma_t = \Psi \Psi^T$ تكوبن العوامــل $\Sigma_t = \Psi \Psi^T$

فقط Σ_t فقط (Higham, 1999) ، بالتالي، Σ_t بالتالي، m(r+1) - r(r-1)/2 ، بالتالي، m فقط الخطية في m وفقاً لذلك مع عدد متغيرات m ومشاهدات $y_t = (y_{t1}, \dots, y_{tm})^T$ بمكن نمذجة البيانات وفق الشكل التالي:

$$(y_t | \Lambda, f_t \overline{\Sigma}_t \sim N_m(\Lambda f_t, \overline{\Sigma}_t))$$

$$(f_t | \widetilde{\Sigma}_t \sim N_t(0, \widetilde{\Sigma}_t))$$

$$(6)$$

حيث $\Lambda \in R^{m \times n}$ مصفوفة طولية $f_t = (f_{t1}, ..., f_{tr})^T$ مصفوفة طولية (tall matrix)، مصفوفات التباين المشترك $\overline{\Sigma}_t$ كلاهما مصفوفات قطرية تمثل عمليات التقلب العشوائي المستقلة (Han, 2006):

$$\begin{split} \overline{\Sigma}_{t} &= diag(\exp{(\overline{h_{t1}})}, ..., \exp(\overline{h_{tm}})), \\ \widetilde{\Sigma}_{t} &= diag(\exp{(\widetilde{h_{t1}}, ..., \exp(\widetilde{h_{tr}}))}), \\ \overline{h_{ti}} &\sim N(\overline{\mu_{i}} + \overline{\varphi_{i}}(\overline{h_{t-1,i}} - \overline{\mu_{i}}), \overline{\sigma_{i}^{2}}), \qquad i = 1, ..., m \\ \widetilde{h_{tj}} &\sim N(\widetilde{\mu_{j}} + \widetilde{\varphi_{j}}(\widetilde{h_{t-1,j}} - \widetilde{\mu_{j}}), \widetilde{\sigma_{j}^{2}}), \qquad j = 1, ..., r. \end{split}$$
 (7)

حيث h عملية (log-variance)، معلمات نموذج θ عملية عملية والثبات (persistence)، يُمثل مدى تأثير الصدمات في السلسلة الزمنية. σ الانحراف المعياري في عمليات (log-variance) والتي تسمى (volvol) والتي تُمثل مؤشر عدم التأكد في السياسة الاقتصادية في سورية.

من المعادلتين السابقتين يتم التوصل إلى المعادلة التالية:

$$\Sigma_t = \Lambda \widetilde{\Sigma}_t \Lambda^T + \overline{\Sigma}_t \tag{8}$$

ومن خلال هذه المعادلة تظهر العديد من المشاكل: الخصائص، الترتيب، عدد وحجم العوامل، بشكل أكثر تحديداً لأي مصفوفة متغيرة معممة $P=r\times r$ يتم إيجاد تحليل آخر فعال حيث أنّ $\Sigma_t=\Lambda'\Sigma_t'(\Lambda')^T+\overline{\Sigma_t}$ و $\Sigma_t=\Lambda'\Sigma_t'(\Lambda')^T+\overline{\Sigma_t}$ ويتم حل مشكلة الغموض في حجم العوامل من خلال تحديد مستوى التباين اللوغاريتمي إلى الصفر،

من خلال والترتيب من خلال .j=1,...,r حيث $\widetilde{\mu_j}=0$. يمكن تطبيق تعريف الخصائص والترتيب من خلال القيود المفروضة على مصفوفة تحميل العوامل (Kastner, 2019)

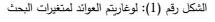
كشرط ضروري للبدء بالتحليل البيزي، تحديد المعلومات حول العناصر الأساسية لعملية التباين الكامن، وكذلك لمصفوفة تحميل العامل Λ ، انطلاقاً من قاعدة بيز الرئيسية، حيث يمكن من خلال حزمة Factorstochvol في برنامج R تصميم ثلاثة أنواع من التوزيعات الأولية، يمكن كتابتها بالشكل $(0,\tau_{ij}^2)^{-1}$ ، يطبق بشكل مستقيم لكل $i\in 1,...,r$ و $i\in 1,...,r$ أولاً، يمكن تحديد جميع الi i بشكل مسبق، وينتج عن ذلك توزيع سابق طبيعي لكل عنصر من عناصر مصفوفة التحميل. النوع الثاني هو التوزيع الهرمي السابق تمّ تطويره لتطبيق انكماش أكثر قوة وقابلية للتطوير:

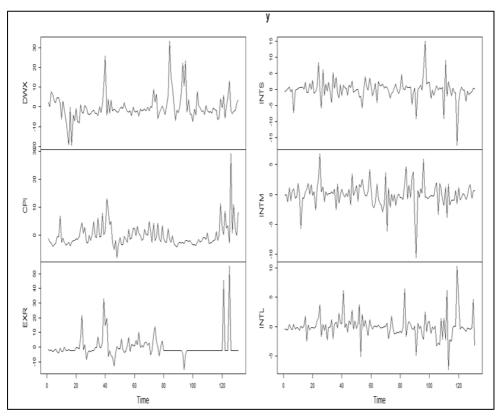
$$\left(\Lambda_{ij} \middle| \tau_{ij}^2 \sim N(0, \tau_{ij}^2)\right) \quad \left(\tau_{ij}^2 \middle| \lambda_i^2 \sim g(a, a \, \lambda_i^2/2)\right) \quad (9)$$

(Griffin and Brown, 2010) وهو توزيع غاما الطبيعي المطور من قبل (λ_i^2) وينطوي على تباين مشروط (λ_i^2) من λ_i^2 وتفرطح زائد غير مشروط من λ_i^2 . يتم التعامل مع قيمة λ_i^2 كمعلمة هيكلية يتم تحديدها من قبل المستخدم، حيث يفرض اختيار صغير (λ_i^2) انكماشاً صغيراً نحو الصفر، بينما يفرض اختيار كبير (λ_i^2) انكماشاً ضئيلاً. Park and (λ_i^2) المعلمة تسمى توزيع lasso Bayesian السابق (Casella, 2008)، المعلمة λ_i^2 يتم تقديرها من البيانات مع (λ_i^2).

النوع الثالث هو تعديل طفيف عن النوع الثاني، نظراً لأنّ التباينات في كل صف من صفوف مصفوفة تحميل العامل ٨ يمكن رؤيتها على أنها تأثيرات عشوائية من نفس التوزيع الأساسي، وبالتالي التوزيع السابق وفق المعادلة السابقة يؤدي إلى انكماش في الصفوف مع التكيف مع التكيف مع التكيف مع العنصر، وبنفس الطريقة يحدث انكماش العمود مع التكيف مع العنصر (Griffin and Brown, 2010):

$$\left(\Lambda_{ij}\middle|\tau_{ij}^2\sim N\left(0,\tau_{ij}^2\right)\right)\quad \left(\tau_{ij}^2\middle|\lambda_j^2\sim g\left(a,a\,\lambda_j^2/2\right)\right)\quad (10)$$


3. النتائج والمناقشة


بهدف قياس مؤشر عدم التأكد في السياسة الاقتصادية في سورية، سيتم استخدام البيانات بتردد الشهري الممتدة (2010–2020) والتي تتضمن المتغيرات التالية (سعر الإغلاق الشهري لمؤشر سوق دمشق للأوراق المالية (DWX) (Damascus Stock) والمي الشهري لمؤشر سوق دمشق للأوراق المالية الشهري لسعر صرف الليرة السورية مقابل (Exchange,2010 –2020) الدولار في السوق الموازي (EXR) – سعر الفائدة الشهري على الأجل (الطويل – المتوسط الماليد الماليد (Central Bank of Syria, 2010 –2020) المعار المستهلك الشهرية (1) (Central Bureau of Statistics, 2010 – 100).

تتضمن الخطوة الأولى في بناء المؤشر إعداد البيانات، حيث سيتم تقدير النموذج باستخدام لغة البرمجة الإحصائية R حزمة (Package factorstochvol). والتي تتطلب أن تكون البيانات على شكل مصفوفة $Y = (y_1, ..., y_n)^T$ مع صفوف n وأعمدة m. بدلاً من استخدام البيانات الخام التراكمية، يتم استخدام لوغاريتم العوائد (Stylized facts) نظراً لخصائصها الإحصائية، تُسمى هذه الخصائص حقائق مجردة (Stylized facts): أولاً: لا تتبع العوائد توزيع طبيعي، ففي معظم الحالات ينحرف التوزيع إلى اليسار وبتفرطح مرتفع أي للعوائد قمة عالية (Fama, 1965). ثانياً: العوائد أي للعوائد قمة عالية (Stationary) ولا يوجد تقريباً ارتباط بين العوائد للأيام المختلفة، آخر حقيقة هي وجود اعتماداً إيجابياً بين العوائد المطلقة في الأيام القريبة وبالتالي للعوائد التربيعية. يتم حساب العوائد من المعادلة الآتية (Ugurlu et al., 2014):

$$R_{it} = ln \frac{X_t}{X_{t-1}} \tag{11}$$

حيث تمثل R_{it} معدل عائد الأسعار في الزمن t ، تمثل t سعر إغلاق المتغيرة في الزمن t ، وتمثل t سعر إغلاق المتغير في الزمن t . يؤدي ذلك إلى مجموعة بيانات مع حجم t .

المصدر: مخرجات لغة البرمجة الإحصائية R.

يبين لنا الشكل (1) ارتفاع تقلبات عوائد المتغيرات بعد عام 2011، وبالاحظ أن ارتفاع عوائد أسعار الصرف والمستهلك يقابله انخفاض في عوائد أسعار الفائدة. أهم الافتراضات التي ترافق حالات عدم التأكد هي ارتفاع تقلب أسعار المتغيرات المستخدمة في بحثنا. في بداية التحليل نحتاج إلى تحديد التوزيع الأولي Prior كشرط لبدء عملية التحليل، وبعتمد في ذلك على توزيع غاما الطبيعي الهرمي Normal Gamma Hierarchical ونعتمد في ذلك على توزيع غاما الطبيعي سمح هذا التوزيع بالتحكم بالتوزيعات الأولية بما يلائم الأبعاد العالية للمتغيرات، وبالتالي تحقيق انكماش Shrinkage ناتج عن توزيعات معلمات مستمرة مختلفة تماماً. يتوفر في حزمة factorstochvol عدد من الخيارات لتحديد معلمات

hyperparameter يتم تعيين قيم توزيع غاما بما يلائم خصائص البيانات مع فرض الكماش صغير نحو الصغر (المعلمة α افتراضياً أقل من 1 و المعلمة λ_i^{Λ} يتم تحديدها (Hosszejni and Kastner, 2019). ولمعرفة مدى إمكانية تقدير العامل الكامن من خلال المصفوفة $m \times m$ باستخدام (fsvsample) يتم ذلك من الدالة (findrestrict) والتي من خلالها يتم أتمتة هذا الإجراء، حيث يعني الإدخال TRUE أنّ هذا العامل لا يختلف عن الصفر، ويعني الإدخال FALSE بأنه من الممكن تقدير العامل من البيانات. وبإدخال مصفوفتنا نجد النتيجة التالية:

جدول رقم (1): نتائج مدخلات البيانات لمعرفة مدى إمكانية تقدير العامل الكامن

	1	2	3	4	5	6
1	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

المصدر: مخرجات لغة البرمجة الإحصائية R.

نلاحظ بأنّ العامل الكامن يمكن تقديره من خلال عناصر مصفوفة البيانات المُدخلة (كفاية العينة). الخطوة التالية هي مرحلة أخذ العينات Sampling، من خلال سلسلة ماركوف مونت كارلو MCMC، نقوم هنا باستدعاء دالة ()Fsvsample، والتي تتضمن بالإضافة لعناصر التوزيع السابق، العناصر الأساسية التالية:

y: البيانات، factors: العوامل الكامنة، draws: عدد العينات التي يتم سحبها بعد الإهمال (التخلص من التوزيعات الأولية غير المستقرة burnin).

Thin: كمية الترقق (السحوبات التي يتم الاحتفاظ بها)، Burnin: طول فترة الإهمال، أي عدد سحب MCMC التي سيتم التخلص منها وبالتالي استبعاد الأثار الأولية قبل أخذ العينات الناتجة عن التوزيع المستقر (Stationary Distribution).

Keeptime: وقت التوقف، الخيار all: يعني أن جميع تقلبات السجل الكامنة يتم مراقبتها في جميع النقاط الزمنية، الخيار last: مما يعني أنّ تقلبات السجل الكامنة يتم تخزينها فقط في t=n، أي في النقطة الأخيرة من الزمن. يتم استخدام الخيار Hosszejni and لتجنب الإفراط في استخدام الذاكرة بأبعاد أعلى Kastner, 2019).

خضر العكارى

Heteroskedastic: مؤشر يُستخدم لتحديد ما إذا كانت التقلبات العشوائية متغيرة TRUE أو مستقرة FALSE خلال الفترة الزمنية.

Samplefac: خيار يستخدم لتضمين إما العوامل الملاحظة False أو العوامل الكامنة True.

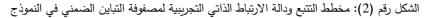
Runningstore: يشير إلى عدد المرات التي يجب فيها حساب Runningstore: ميث يعني 1 أنّه يجب القيام بذلك عند كل تكرار والأرقام الأعلى تقلل من وقت التشغيل وكذلك الدقة.

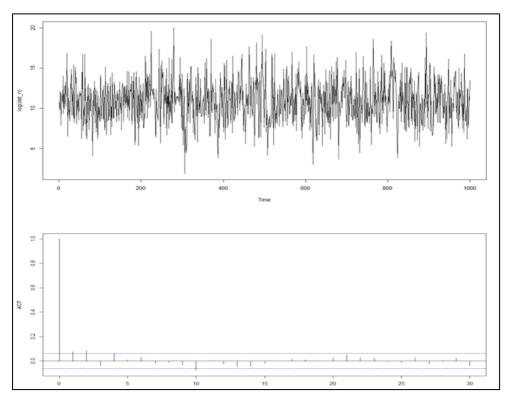
Quiet: مؤشر منطقي يحدد مدى صحة أخذ العينات في fsvsample Hosszejni) .and Kastner, 2019)

حيث نقوم بتقدير مؤشر عدم التأكد في السياسة الاقتصادية مع 6 متغيرات، و132 شهراً، و1000 سحب عينات MCMC وفترة اهمال 1000:

جدول رقم (2): مخرجات أخذ العينات من عمليات

	facload	Fac	Logvar	Para	latesta uxiliary	Y	Runnin gstore	Config	Priors	Identifier
Length	6000	1000	7000	21000	2	786	7	19	11	2

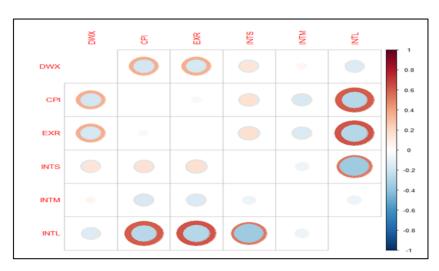

المصدر: مخرجات لغة البرمجة الإحصائية R.


تتضمن عملية أخذ العينات النتائج التالية: مصفوفة تحميل العامل Λ ، كميات التوزيع اللاحق posterior للعامل المُقدر δ العوامل المختلفة ومعلمات نموذج δ الخاصة idiosyncratic التوزيع اللاحق للتقلب المشترك للمتغيرات (العامل الكامن (مؤشر عدم التأكد)، والتقلبات الفردية للمتغيرات (latent factor and idiosyncratic log المتغيرات variance (h).

إعدادات تكوين الخوارزمية، مثل عدد السحوبات (أخذ العينات)، ومعلمات التوزيع الأولى prior.

running store: والتي تتضمن المؤشرات الأكثر أهمية (التقلبات الكامنة (الهامشية) (النقلبات الفردية لكل متغير) – تقلب التباين للعامل الكامن (تباين التقلبات الفردية والمشتركة) – العامل الكامن (مؤشر عدم التأكد الذي يمثل التقلبات الفردية والمشتركة للمتغيرات). ويُمكننا الحصول على سحوبات MCMC من خلال الدّالة (covmat) من مصفوفات التباين المشترك المُقدرة لجميع النقاط في الزمن الذي تمّ تخزينه أثناء أخذ العينات، ووفق افتراضاتنا تمّ تخزينه في النقطة الأخيرة من الزمن (dast):

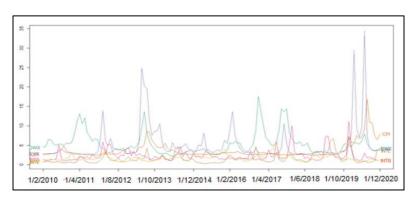
نجد بأنه تمّ تخزين 1000 سحب لاحق لمصغوفة التباين المشترك 6×6 في وقت واحد، t=n=1000. للتحقق من التقارب Convergence في عملية التقلب لمصغوفة التباين المشترك الضمني للنموذج، يمكن النظر إلى مخطط التتبع Trace Plot ودالة الارتباط الذاتي Autocorrelation Function:


المصدر: مخرجات لغة البرمجة الإحصائية R.

يُظهر مخطط التسلسل الزمني، قيم عينات المعلمة المُقدرة مع مرور الزمن. حيث نلاحظ أنّ عملية التقدير جيدة، حيث أنّ السلاسل تتقارب من خلال مخطط التتبع، مع استقلالية تقدير المعالم في كل نقطة من الزمن، وهو ما توضحه دالة الارتباط الذاتي مع ارتباط آني قوي وتلاشي الارتباط بشكل فوري مع الزمن. وبالتالي عدم وجود مشاكل تقارب Convergence واضحة. لتقييم سرعة السحب من التوزيع لكل عنصر من عناصر مصفوفة التباين الفردي، يمكن التحقق من حجم العينة الفعال المقدر (من بين 1000 سحب تم الاحتفاظ به) والذي يتم تنفيذه في coda. ونحصل على الجدول التالي:

جدول رقم (3): حجم العينة الفعال

المصدر: مخرجات لغة البرمجة الإحصائية R.


تُبيّن لنا نتائج الجدول عدم وجود مشكلة تقارب Convergence من خلال حجم العينة الفعال المقدر. لمعرفة درجة الارتباطات الشرطية وتغيرها زمنياً مع تقلبات المتغيرات، نقوم باستخدام تقنية تمثيل البيانات Visualizations لمصفوفة الارتباط المتغيرة مع مرور الزمن Time-Varying correlation matrices:

الشكل رقم (3): التوزيعات اللاحقة (Posterior) لمصفوفة الارتباط المتغيرة مع مرور الزمن

المصدر: مخرجات لغة البرمجة الإحصائية R.

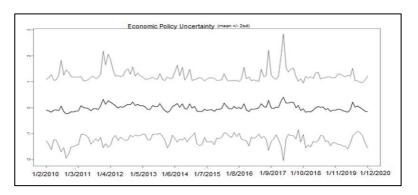
يوضح الشكل السابق حالة عدم التأكد في التوزيع اللاحق Posterior بين المتغيرات، حيث يتطابق نصف قطر الدوائر مع المتوسط اللاحق + - انحرافين معياريين (اللون الأحمر دليل ارتباط طردي كلما كان أغمق فالارتباط أعلى، كلما كان نصف القطر أكبر كانت الانحرافات المعيارية أقل). بالنسبة لمؤشر سوق دمشق فترتبط عوائد أسعار بدرجة متوسطة وبشكل متقلب (طردي وإيجابي) خلال الفترة المدروسة مع عوائد أسعار المستهلك والصرف مع انحرافات معيارية أكبر عندما يكون الارتباط سلبي، كما نجد أن هذا الارتباط طردي ضعيف وأكثر تقلباً مع عوائد أسعار الفائدة قصيرة الأجل وعكسي ضعيف مع عوائد أسعار الفائدة طويلة الأجل. كما نجد من الشكل أنّ الارتباط الأعلى لعوائد أسعار المستهلك والصرف مع عوائد أسعار الفائدة طويلة الأجل مع ارتباطات إيجابية وسلبية مرتفعة وأقل تقلباً على طول الفترة الزمنية المدروسة. إنّ هذه التغيرات والتقلبات في الارتباط تدل على حالة عدم تأكد في السياسة الاقتصادية في سورية. ولمعرفة كيفية تطور التقلبات الهامشية Marginal Volatilities بمرور الزمن (لمجموعة المتغيرات):



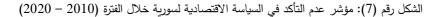
الشكل رقم (4): التقلبات الهامشية الخاصة لمتغيرات الدراسة خلال الفترة المدروسة

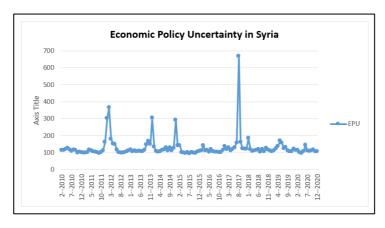
المصدر: مخرجات لغة البرمجة الإحصائية R.

يُبيّن الشكل أنّ درجة التقلب المشتركة للمتغيرات ارتفعت بعد عام 2011 لتبلغ مستويات مرتفعة خلال النصف الثاني من عام 2012 و 2013، وبداية عام 2018 ومنتصف عام 2020. ونجد من التقلبات الخاصة ارتفاعات كبيرة لتقلبات مؤشر سوق دمشق للأوراق المالية ولتقلبات مؤشر أسعار الفائدة طويلة الأجل بداية عام 2020 والتي تعكس الأحداث السياسية والاقتصادية في سورية. يمكن تقدير مقدار مشاركة كل متغير Communalities في تباين العامل الكامن (عدم التأكد في السياسة الاقتصادية):



المصدر: مخرجات لغة البرمجة الإحصائية R.


يبيّن لنا الشكل (5) أنّ جميع المتغيرات لها تشاركيات في رسم تقلبات العامل الكامن خلال الفترة المدروسة لكن بدرجة مختلفة، نلاحظ أنّ كل من عوائد أسعار المستهلك والصرف الأكثر تشاركية في رسم تقلبات العامل الكامن خلال الفترة المدروسة وبدرجة تصل في بعض الفترات إلى 80%، ثم يليها كل من عوائد أسعار الأسهم والفائدة طويلة وقصيرة الأجل بمعدلات تشاركية حوالي 30%، وأقلها لعوائد أسعار معدلات الفائدة متوسطة الأجل بمعدل لا يتجاوز 10% خلال الفترة المدروسة. وفقاً للنتائج السابقة نستنتج العامل الكامن الذي يقود التقلبات الخاصة والمشتركة لمجموعة من المتغيرات الاقتصادية ونطلق عليه متغير عدم التأكد في السياسة الاقتصادية (وهو يمثل الانحرافات المعيارية للوغاريتم التباين):


الشكل رقم (6): لوغاريتم التباين للعامل الكامن (مؤشر عدم التأكد في السياسة الاقتصادية لسورية) مع (±2) انحرافات معيارية

المصدر: مخرجات لغة البرمجة الإحصائية R.

يُمثل الشكل (6) لوغاريتم التباين للعامل الكامن (مؤشر عدم التأكد في السياسة الاقتصادية في سورية) مع (2 ±) انحرافات معيارية. بما يتفق مع مؤشرات عدم التأكد في السياسة الاقتصادية العالمية والمعتمدة عالمياً نقوم بعملية معايرة للمؤشر السابق (Normalizition Min – Max) ليأخذ قيماً بين 0 و 1000 ونحصل على الشكل التالي:

المصدر: مخرجات لغة البرمجة الإحصائية R.

نلاحظ من الشكل ارتفاع للمؤشر بصورة طفيفة خلال منتصف عام 2010 على الرغم من المؤشرات الإيجابية للمتغيرات الاقتصادية خلال هذا العام من استقرار لسعر الصرف ومعدلات تضخم مقبولة ومعدلات فائدة مستقرة (الشكل (1))، وبعود ذلك بشكل رئيسي إلى الجفاف الشديد الذي أدى إلى انخفاض محاصيل إنتاج القمح والقطن بنسبة 70% عما كان مخططاً له، مع استمرار تداعيات الأزمة المالية العالمية وتراجع تحويلات العاملين بالخارج. نلاحظ الارتفاع أيضاً في مؤشر عدم التأكد في السياسة الاقتصادية مع بداية عام 2012 إلى 400 نقطة بسبب الدخول في الأزمة والعقوبات الاقتصادية المفروضة على سورية بما في ذلك قطع العمليات مع مصرف سورية المركزي وتجميد الأصول المرتبطة بالحكومة السورية وحظر الاستثمارات وتجميد الموارد الاقتصادية. كما نلاحظ الارتفاعات في المؤشر مع نهاية عام 2014 إلى 300 نقطة بسبب الشائعات الكبيرة حول نقص احتياطيات البنك المركزي من العملات الصعبة مع عدم تدخله في سوق القطع الأجنبي مع ارتفاع هامش سعر الصرف بين السوق الرسمية والسوداء، كما نلاحظ ارتفاع المؤشر خلال الربع الأخير من عام 2017 بشكل كبير ووصل حتى 668 نقطة نتيجة الاعتداءات الاسرائيلية المتكررة على عدة مواقع في سورية، وارتفاع المؤشر خلال الربع الأول من عام 2018 بسبب تهديد ترامب (عبر توبتر) بتوجيه ضربة عسكربة على سوربة. كما يبيّن الشكل عودة الارتفاع في المؤشر حتى 145 نقطة منتصف عام 2020 نتيجة دخول سوربة في إجراءات مواجهة كورونا والقرارات الناتجة عنها.

3. الاستنتاجات

في هذا البحث، تمّ قياس مؤشر عدم التأكد في السياسة الاقتصادية في سورية بالاعتماد على التقلبات الخاصة والمشتركة لمجموعة من متغيرات الاقتصاد الكُلي والمالي باستخدام نموذج التقلب العشوائي البيزي. أظهر المؤشر المُقدر ارتفاعاً في الفترات المقابلة للأحداث السياسية والاقتصادية في سورية خلال الفترة المدروسة. نعتقد أنّ المؤشر المقترح يمكن أن يكون دليلاً لقياس مؤشرات عدم التأكد في السياسة الاقتصادية في البلدان العربية وأنّ يكون لهذا المؤشر تطبيقات واسعة أهمها بأنه من الممكن إدراجه مع نماذج الاقتصاد القياسي كدلالة على الأحداث غير المرصودة ومن الممكن أن يكون بديلاً عن مؤشرات النشاط الاقتصادي في حال عدم توفرها (مثل الناتج المحلى الإجمالي الشهري).

الهوإمش

- (1) البيانات بشكل تفصيلي في الملحق رقم (1).
- (2) Data visualization تقنية التمثيل البياني للمعلومات والبيانات، باستخدام العناصر المرئية مثل الرسوم البيانية والخرائط، وبالتالي المساعدة على فهم الاتجاهات والقيم المتطرفة والأنماط في البيانات.
 - (3) جميع الأكواد التي تعطينا مخرجات البرنامج موجودة في الملحق (1).

المراجع الأجنبية

Aguilar, O. and West, M. (2000). Bayesian dynamic factor models and portfolio allocation. Economic Statistics, 18 (3), 338–357.

Baker, S. and Bloom, N. and Davis, S. (2016). Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636.

Basu, S. and Bundick, B. (2015). Uncertainty Shocks in a Model of Effective Demand. Econometrica, 85 (3), 937-958.

Bloom, N. (2009). The Impact of Uncertainty Shocks. Econometrica, 77(3), 623–685...

Central Bank of Syria. (2010-2020). EXCHANGE RATES - BULLETIN_INT_COM. Available at: http://cb.gov.sy/en/exchange-rate/all. (Accessed on 29/10/2021).

Central Bureau of Statistics. (2010-2020). Consumer price index CPI in Syria. Available at: http://cbssyr.sy/index-EN.htm. (Accessed on 29/10/2021).

Damascus Stock Exchange. (2010-2020). DSE Weighted Index (DWX). Available at: http://www.dse.gov.sy/. (Accessed on 29/10/2021).

Fama. B. (1995). The behavior of stock market prices. Journal of Business, 38 (1), 34–105.

Griffn, J. and Brown, P. (2010). Inference with Normal-Gamma Prior Distributions in Regression Problems. Bayesian Analysis, 5(1), 171–188.

Han, Y. (2006). Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model. Review of Financial Studies, 19 (1), 237–271.

Higham NJ. (1999). Analysis of the Cholesky Decomposition of a Semi-Definite Matrix. Technical report. Manchester Institute for Mathematical Sciences. MIMS EPrint 2008.56.

Hosszejni, D. and Kastner, G. (2019). Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage. Bayesian Statistics and New Generations - Selected Contributions from BAYSM 2018, 296, 75-83.

Jurado, K. and Sydney, C. and Serena, N. (2015). Measuring Uncertainty. American Economic Review, 105, 1177–1216. DOI: 10.1257/aer.20131193.

Kastner, G. (2019). factorstochvol: Bayesian Estimation of (Sparse) Latent Factor Stochastic Volatility Models. R package version 0.9.2, URL https://cran.r-project.org/package= factorstochvol.

Kastner, G. and Schantter, S. and Lopes, H. (2017). Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models. Department of finance Accounting and statistics. Vienna University of Economics and Business.

Link, W and Eaton, M. (2012). On thinning of chains in MCMC. Methods in Ecology and Evolution, 3, 112–11.

Mandelbrot. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.

Neuwirth, Erich. (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, URL https://CRAN.R-project.org/package=RColorBrewer.

Ozturk, E. and Sheng, S. (2017). Measuring Global and Country-Specific Uncertainty. International Monetary Fund, Working Papers.

Park, T and Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(452), 681–686.

Pastor, L. and Veronesi, P. (2010). Uncertainty about Government Policy and Stock Prices. National Bureau of Economic Research, Working Paper 16128.

Simpson, Daniel and Rue, Håvard and Riebler, Rue and Thiago, Sigrunn. (2017). Penalising model component complexity: A principled, practical approach to constructing priors .Statistical Science, 32(1). 28.

Ugurlu, E; and Thalassinos, E; and Muratoglu, Y. (2014). Modeling Volatility in the Stock Markets using GARCH Models. International Journal in Economics and Business Administration. Vol 2(3), 2014, 72-87.

خضر العكارى

Yildirim, I. (2014). Bayesian Inference: Metropolis-Hastings Sampling. Department of Brain and Cognitive Sciences. University of Rochester.

Zhou, X. and Nakajima, J. and West, M. (2014). Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models, International Journal of Forecasting, $30 \, (4), 963–980$.

الملاحق

ملحق رقم (1): الأكواد المستخدمة في لغة البرمجة الإحصائية R لقياس عدم التأكد في السياسة الاقتصادية في سورية باستخدام نموذج التقلب العشوائي البيزي

factorstochvol package	الحزمة المستخدمة
R > library(readxl) R > EPU <- read_excel R > View(EPU) R > Rlibrary("factorstochvol", lib.loc="~/R/win-library/3.6") R > EPU <- ts(EPU, frequency = 12, start = c(1, 2010)) R > m<- 6 R > n<- 132 R > y <- 100 * logret(tail(EPU[, seq_len(m)], n + 1), demean = TRUE)	استيراد البيانات EPU والرسم البياني لعوائد المتغيرات وتحويلها إلى شكل مصفوفة
R > findrestrict(ty, factors = 1)	معرفة مدى إمكانية تقدير العامل الكامن من خلال مصفوفة البيانات
R > res<- fsvsample(y, factors = 1, draws = 10000, burnin = 1000, thin = 10, keeptime = "last", heteroskedastic = TRUE, samplefac = TRUE, runningstorethin = 1, quiet = TRUE)	ضبط الإعدادات في لغة البرمجة الإحصائية R
R > summary(res)	مخرجات نموذج التقلب العشوائي البيزي
R > dim(cov_n <- covmat(res))	الحصول على سحوبات سلسلة ماركوف مونت كارلو
R > det_n <- apply(cov_n[,,,1], 3, det) R > ts.plot(log(det_n)) R > acf(log(det_n), main = "")	مخطط التتبع – دالة الارتباط الذاتي
R > round(apply(cov_n, 1:2, coda::effectiveSize))	حجم العينة الفعال المقدر
R > corimageplot(res, these = seq(1, n, length.out = 3), plotCl = "circle", + plotdatedist = 1, date.cex = 1.1)	مصفوفة الارتباط المتغيرة مع مرور الزمن
R > palette(RColorBrewer::brewer.pal(7, "Dark2")[-5]) R > voltimeplot(res)	تطور التقلبات الهامشية بين المتغيرات
R > comtimeplot(res, maxrows = 6)	تقدير مقدار مشاركة كل متغير Communalities في تباين العامل الكامن
R > logvartimeplot(res, show = "fac")	لوغاريتم التباين للعامل الكامن (عدم التأكد في السياسة الاقتصادية (مع الانحرافات المعيارية)

المصدر: إعداد الباحث.

خضر العكاري

ملحق رقم (2): البيانات المستخدمة في قياس مؤشر عدم التأكد في السياسة الاقتصادية في سورية ومؤشر عدم التأكد في السياسة الاقتصادية في سورية خلال الفترة الشهرية 2010 – 2020

EPU	INTL	INTM	INTS	EXR	СРІ	DWX	العام
-	9.23	8.2	8.11	45.8	91.12	1084	1/1/2010
115.7065	9.22	8.21	8.05	46.2	92.47	1127	1/2/2010
115.05301	9.19	8.23	8.02	46.2	92.87	1145	1/3/2010
120.44246	9.16	8.15	8.03	46.4	92.74	1256	1/4/2010
126.83614	9.21	8.27	8.09	46	91.44	1357	1/5/2010
118.25425	9.21	8.21	8.04	46.1	90.72	1416	1/6/2010
108.62744	9.18	8.28	8.04	46.6	90.4	1469	1/7/2010
117.07612	9.23	8.38	7.48	46.2	92.2	1562	1/8/2010
114.37276	9.21	8.35	7.46	45.5	94.4	1662	1/9/2010
100.22079	9.22	8.34	7.46	46.3	103.8	1723	1/10/2010
103.26846	9.22	8.52	7.48	46.1	103.9	1645	1/11/2010
102.76174	9.18	8.55	7.53	46	105.66	1719	1/12/2010
98.80222	9.21	8.1	7.57	47.082	105.9	1721	1/1/2011
99.79692	9.21	8.08	7.63	47.125	104.9	1629	1/2/2011
103.07718	9.24	8.05	7.63	47.1925	104.3	1452	1/3/2011
117.68388	9.43	8.11	7.8	47.69	104.5	1216	1/4/2011
111.09001	9.22	8.2	7.73	47.692	103.3	1233	1/5/2011
107.8809	9.26	8.38	7.66	47.69	103.5	1031	1/6/2011
103.98027	9.23	8.41	7.8	47.69	104.4	1006	1/7/2011
101.05217	9.24	8.57	7.8	47.69	105.1	951	1/8/2011
97.76998	9.25	8.58	8.02	48.7575	106.5	958	1/9/2011
101.45973	9.25	8.64	7.92	49.716	107.7	903	1/10/2011
111.40853	9.27	8.45	7.88	50.345	109.9	847	1/11/2011
162.00385	9.39	8.56	7.94	55.135	115.6	870	1/12/2011
301.68844	9.55	8.81	8.63	70.02	124.1	862	1/1/2012
365.50531	9.93	9.46	8.63	70.46	128.2	849	1/2/2012
180.70004	9.79	9.53	8.15	73.28	135.5	869	1/3/2012
153.82216	9.85	9.68	8.66	68.99	135.8	878	1/4/2012
150.51688	9.81	9.59	8.5	68.31	135.8	862	1/5/2012

EPU	INTL	INTM	INTS	EXR	CPI	DWX	العام
115.97575	9.87	9.66	8.64	68.29	139.6	843	1/6/2012
102.56153	9.67	9.67	8.6	67.89	140.8	826	1/7/2012
98.48845	9.68	9.71	8.8	67.82	144.6	819	1/8/2012
99.75956	9.7	9.75	8.71	67.79	156.1	817	1/9/2012
102.79162	9.84	9.82	8.37	69.33	159.7	804	1/10/2012
106.91942	9.66	9.86	8.81	70.69	162.7	792	1/11/2012
113.14951	9.72	9.97	8.85	77.64	177.9	770	1/12/2012
117.96353	9.82	9.75	9.18	79.48	181.5	782	1/1/2013
106.28285	9.82	9.95	9.07	81.19	185.8	771	1/2/2013
112.80926	10.07	9.84	8.84	85.86	206.3	794	1/3/2013
106.65088	10.16	9.86	8.97	122.16	212.3	897	1/4/2013
108.7913	10.23	9.97	8.81	145.20	220.2	1178	1/5/2013
109.73097	10.9	9.99	8.93	181.01	257.4	1149	1/6/2013
106.89643	10.91	9.97	8.98	174.17	288.4	1211	1/7/2013
114.26444	10.99	10.01	9.01	174.40	307.8	1190	1/8/2013
147.15278	10.91	10	8.84	169.21	331.8	1251	1/9/2013
167.86415	11.04	10.11	8.95	161.98	332.3	1246	1/10/2013
150.7519	11.1	9.96	9.01	145.74	324.1	1252	1/11/2013
303.85552	11.44	10.34	9.25	143.62	326.6	1249	1/12/2013
134.39304	11.41	10.35	9.16	147.69	309.7	1235	1/1/2014
108.66006	11.55	10.43	9.11	149.57	307.3	1221	1/2/2014
103.52927	11.53	10.61	9.12	151.62	312.7	1232	1/3/2014
106.85794	11.61	10.52	9.13	164.21	310.3	1249	1/4/2014
113.4579	12.07	10.72	8.92	165.85	308	1260	1/5/2014
118.17615	11.5	10.89	8.73	164.21	315.2	1308	1/6/2014
129.78512	11.77	11.2	8.25	163.21	319.9	1321	1/7/2014
112.33473	11.79	11.31	8.28	169.41	320.1	1312	1/8/2014
130.61919	11.94	11.32	8.61	185.04	336	1298	1/9/2014
110.82744	11.95	11.32	8.67	183.74	340.3	1292	1/10/2014
127.36575	11.79	11.4	8.65	191.07	345.8	1254	1/11/2014
293.40015	11.96	11.91	8.96	197.92	364.6	1271	1/12/2014
141.80981	11.99	12.03	9.05	204.93	383	1262	1/1/2015

خضر العكاري

EPU	INTL	INTM	INTS	EXR	CPI	DWX	العام
143.34638	11.96	11.85	8.87	219.79	392.5	1249	1/2/2015
102.75365	11.99	11.62	8.84	229.25	416	1242	1/3/2015
98.57293	12.02	11.49	9.01	260.56	430.2	1203	1/4/2015
95.62814	12.04	11.72	8.66	266.15	440.9	1207	1/5/2015
101.32643	12.1	11.68	8.87	276.35	444	1200	1/6/2015
95.25944	12.12	11.54	8.98	283.33	449.8	1200	1/7/2015
100.65329	12.12	11.37	9.09	299.43	472.3	1205	1/8/2015
100.08067	12.13	11.07	9.25	316.54	486.7	1199	1/9/2015
96.38867	12.15	10.93	9.29	328.78	500.4	1215	1/10/2015
104.59479	12.18	11.37	9.38	346.67	540	1209	1/11/2015
109.44608	12.28	10.73	9.44	337.40	564.5	1228	1/12/2015
111.97521	12.05	10.87	9.4	335.66	565.7	1246	1/1/2016
142.7887	12.02	10.67	9.15	375.84	606.6	1384	1/2/2016
111.49269	12.26	10.71	9.04	442.85	610.7	1440	1/3/2016
114.27671	12.26	10.62	8.98	473.30	621.9	1561	1/4/2016
105.20479	12.13	10.65	9.04	485.68	666.9	1495	1/5/2016
120.59875	12.02	10.49	9.2	468.93	676.9	1469	1/6/2016
107.7909	11.93	10.49	9.15	484.31	679.6	1477	1/7/2016
104.35762	11.83	10.53	9.04	517.42	721.7	1508	1/8/2016
104.25911	11.77	10.5	9.06	517.43	731.9	1511	1/9/2016
103.07898	11.67	10.47	9.49	517.42	734	1479	1/10/2016
102.82155	11.67	10.41	9.52	517.44	735.6	1503	1/11/2016
115.41182	12.47	10.64	9.5	517.43	773.4	1618	1/12/2016
136.38342	12.29	11.18	9.61	517.43	781.95	2295	1/1/2017
119.9955	12.33	11.13	9.67	517.43	782.89	2717	1/2/2017
130.17167	12.46	11.34	9.73	517.43	801.89	3066	1/3/2017
112.41468	12.53	11.31	9.8	517.43	798.5	3129	1/4/2017
120.21032	12.52	11.68	9.36	517.43	790.5	2970	1/5/2017
129.89525	12.49	12.16	9.28	517.43	777.48	2970	1/6/2017
158.69	12.53	11.69	9.32	517.43	774.88	2934	1/7/2017
668.3385	11.96	10.55	8.51	517.43	776.1	2978	1/8/2017
162.47259	12.05	10.65	8.52	517.43	775.9	3253	1/9/2017
123.67426	12.03	10.62	8.57	510.00	777.2	4122	1/10/2017

EPU	INTL	INTM	INTS	EXR	CPI	DWX	العام
122.08901	12.06	10.75	8.68	447.20	774.9	4658	1/11/2017
123.21102	11.92	10.81	8.66	436.00	781.5	5983	1/12/2017
185.18207	11.69	11.5	9.15	436.00	787.8	5919.64	1/1/2018
119.0025	12.01	11.48	10.63	436.00	790.5	6249.61	1/2/2018
109.42101	11.93	11.46	10.82	436.00	795.8	6124.15	1/3/2018
110.85581	12.03	11.41	11.05	436.00	794.6	5989	1/4/2018
115.60864	12.16	11.39	11.3	436.00	788.6	5650.2	1/5/2018
120.53152	12.05	11.41	10.99	436.00	783.7	5673.84	1/6/2018
103.82872	12.07	11.41	10.97	436.00	777.1	5528.66	1/7/2018
118.89576	12.04	11.41	10.77	436.00	778.3	6061.01	1/8/2018
106.86486	12.07	11.58	10.75	436.00	787.9	6205.05	1/9/2018
126.40013	11.7	11.84	10.88	436.00	789.7	6275.57	1/10/2018
116.00256	11.41	11.49	10.87	436.00	796.3	6222.71	1/11/2018
112.17947	11.09	11.74	10.93	436.00	811.2	6190.12	1/12/2018
107.43359	11.27	11.89	10.95	436.00	825.96	6045.49	1/1/2019
112.1624	11.05	11.82	11.02	436.00	836.04	6182.16	1/2/2019
125.15666	11.23	11.64	10.08	436.00	866.38	6173.49	1/3/2019
137.5095	11	11.82	11.04	436.00	863.95	6091.88	1/4/2019
169.87803	11.72	11.41	10.82	436.00	863.58	6054.54	1/5/2019
157.54328	10.91	11.64	11.09	436.00	865.06	5957.74	1/6/2019
124.12045	10.69	11.47	11.15	436.00	871.52	6028.79	1/7/2019
131.63324	10.45	11.4	10.93	436.00	880.23	6041.45	1/8/2019
110.9251	10.46	11.32	10.98	436.00	916.65	6041.45	1/9/2019
108.01192	10.49	11.25	10.9	436.00	924.19	5743.83	1/10/2019
107.43779	10.52	11.36	10.79	436.00	949.21	5517.11	1/11/2019
121.63792	11.69	11.22	9.08	436.00	1091.25	5836.58	1/12/2019
114.77529	12.22	11.38	8.74	436.00	1146.92	5905.62	1/1/2020
114.85391	12.19	11.3	8.7	704.00	1180.12	6365.75	1/2/2020
102.035	12.21	11.27	8.76	704.00	1320.61	6114.24	1/3/2020
98.0047	12.22	11.32	8.75	704.00	1392.52	6240.68	1/4/2020
108.01629	12.19	11.35	8.74	704.00	1481.03	6627.66	1/5/2020
145.06406	12.11	11.29	8.43	1256.00	1481.03	7671.06	1/6/2020

خضر العكاري

EPU	INTL	INTM	INTS	EXR	CPI	DWX	العام
113.00135	12.11	11.29	8.38	1256.00	2036.47	7636.42	1/7/2020
108.81465	12.09	11.45	8.25	1256.00	2107.8	7483.08	1/8/2020
113.13843	12.06	11.67	8.16	1256.00	2410.71	7436.76	1/9/2020
115.96882	12.06	11.63	8.1	1256.00	2511.01	7422.01	1/10/2020
108.20232	12.66	11.73	8.13	1256.00	2577.92	7693.85	1/11/2020
107.45473	12.29	11.84	8.14	1256.00	2871.06	8082.65	1/12/2020

Journal of Development and Economic Policies

Vol (24) - No (2) (ISSN - 1561 - 0411) July 2022 (Bi-annual refereed Journal concerned with Economic Policies)

Semghouni Toufik Zeggai Diab

Mohammed Dahmani Dounia Kerzabi Manel Attouchi

Khder Alakkari

Mounia Bettah Abdeljaouad Ezzrari Mohamed Mourji

Sahar Aboud

The Impact of the Upgrading Programs of Small and Medium-Sized Enterprises on Non-Hydrocarbon Economic Growth in Algeria: An Econometric Study.

Does Oil Price Affect the Inflation Rate in Algeria? A New Insight Based on NARDL and MAKI Cointegration Test.

Measuring Economic Policy Uncertainty in Syria Using Bayesian Stochastic Volatility Model.

Impact of VAT Reforms on Moroccan Household's Food Consumption: Microsimulation Analyses Through the QUAIDS Model (2001-2014).

Role of Policies in Stimulating Renewable Energy in Arab Countries.

مجلة التنمية والسياسات الاقتصادية

Journal of Economic and Development Policies

التعريف بالمحلة

مجلة علمية فصلية محكمة تصدر عن المعهد العربي للتخطيط. وتعنى بنشر البحوث النظرية والميدانية في مجال علم الاقتصاد وسياسات التنمية الاقتصادية، بالإضافة إلى عروض الكتب والتقارير، ومتابعة الندوات والمؤتمرات وفعاليات العلمية المرتبطة بعلم الاقتصاد.

About the Journal

A scientific journal published bi-annually by the Arab Planning Institute. The journal publishes theoretical and field research in economic policy development, in addition to book reports, seminar and conferences proceedings and events related to the field of economics.

الأهداف

- تختص المجلة بالدراسات المرتبطة بقضايا التنمية والسياسات الاقتصادية في الدول العربية على وجه الخصوص في ضوء المتغيرات المحلية والإقليمية والدولية.
- تزويد صانعي القرار والممارسين والباحثين في الدول العربية بأحدث نتائج الدراسات التنموية في المجال الاقتصادي.
 - خلق حوار علمى بناء بين الباحثين والمهتمين بالاقتصادات العربية وصناع القرار بالمنطقة.

Goals

- The Journal is specialized with studies related to development issues and economic policies in Arab countries.
- Provide policy makers and researchers in the Arab word with the latest research results and recommendation in development and economic fields.
- Creating a constructive scientific dialogue between all stakeholders interested in the economic policy of the Arab world.

Publication Guidelines

- The journal publishes original research and studies (Arabic and English) that have not been previously published and were not submitted publication in other journals or periodicals.
- Studies submitted to the journal may not exceed 30 pages or 10000 words, including figures, illustrations, tables, references, and appendices.
- Book and Report reviews must not exceed 10 pages and review recent books/reports that were published through certified publishers.
- Submissions to the journal should be addressed to the Editor on the following email address: jodep@api.org.kw taking in account the following points:
 - Margins in all directions should be 2.5 cm
 Research Tittle should be written
 - between quotation marks (i.e "Title")

 Title should be in font size 16 Bold and the title must be accurate and expressive of the content of the search
 - Font size (12 \ Simplified Arabic) for Arabic texts and (10 \ Time New Roman) for English texts.
 - The research shall be accompanied by two abstracts, in Arabic and English, of no more than 300 words each. And the.
 The research should contain the name of the researcher (researchers). e-mail
 - address and current position.

 The journal uses the (American Psychological Association APA)
 - Six key words relative to the research must be added under the abstracts in both Arabic and English.

reference system.

- At least 3 classifications in accordance with the American Economic Classifications must be added to the paper
- The peer review process is conducted in two stages using the blind review method, as follows:
 - Internal blind review to ensure that the research paper is in line with the journal's requirements (the researcher will be notified within a week)
 - External blind peer review in which the research is reviewed to two referees (the researcher is answered within a month after the initial review, and in case the research is accepted by a reviewer and is rejected by the other. A third reviewer determines the validity of the research)
- All opinions expressed in the research papers are those of the authors and do not express the opinion of the journal or the Arab Planning Institute.

قواعد النشر

- تنشر المجلة الأبحاث والدراسات الأصيلة (باللغتين العربية والإنجليزية) والتي لم يتم نشرها سابقاً ولم تكن مقدمة للنشر في مجلات أو دوريات أخرى.
- تكون الأوراق العلمية والدراسات المقدمة بحجم لا يتجاوز الد 30 صفحة وألا يتجاوز عدد الكلمات 10000 كلمة، بما فيها الأشكال والرسوم والملاحق.
- مراجعة الكتب والتقارير لا تزيد على الـ 10 صفحات على أن تتناول كتب من ضمن مواضيع المجلة وصدرت حديثاً عن دور نشر معروفة.
- تقدم البحوث والدراسات ومراجعات الكتب والتقارير إلى رئيس التحرير، على البريد الإلكتروني للمجلة jodep@api.org.kw بالمواصفات التالية:
 - تكون الهوامش من كافة الاتجاهات 2.5 سم.
- يكتب عنوان البحث بين علامتين تنصيص هكذا " --
- يكتب العنوان بخط حجم 16 مع Bold ويجب أن يكون العنوان دقيقاً ومعبراً عن محتوى البحث.
- حجم الخط (Simplified Arabic \ 12) للنصوص العربية و (Time New Roman \10) للنصوص الانجليزية.
- يرفق مع البحث ملخصان، باللغتين العربية والإنجليزية، بما لا يزيد على 300 كلمة لكل منهما.
- أن يحتوي البحث على اسم الباحث (الباحثين) وعنوان جهة العمل والمسمى الوظيفي للباحث وعنوان البريد الالكتروني.
- التوثيق: تعتمد المجلة نظام (Psychological Association APA) للنشر العلمي.
- يرفق مع البحث ما لا يزيد عن 6 كلمات مفتاحية، وتكون باللغتين العربية والإنجليزية.
- . يرفق مع البحث ما لا يزيد عن 3 رموز حسب تصنيف الكلمات المفتاحية للجمعية الأمريكية للاقتصاد JEL . . Classification
- تتم عملية التحكيم على مرحلتين باستخدام أسلوب التحكيم المعمى وذلك على النحو التالي:
- تحكيم داخلي للتأكد من مطابقة قواعد النشر للمجلة (يتم الرد على الباحث خلال أسبوع)
- تحكيم خارجي بحيث يتم عرض البحث على محكمين (يتم الرد على الباحث خلال شهر بعد التحكيم الأولي وفي حال تم قبول البحث من قبل محكم ورفضه من قبل المحكم الآخر يعرض على محكم ثالث للفصل بعدى صلاحية البحث).
- جميع الآراء الواردة في المجلة تعبر عن كتابها، ولا تعبر بالضرورة عن وجهة نظر المجلة أو المعهد العربي للتخطيط.

Journal of Development and Economic Policies

Published by the Arab Planning Institute

Volume 24 - No. 2 - July 2022

Bi-annual refereed Journal concerned with issues of Development and Economic Policies in the Arab countries

Editor

Dr. Bader Othman Malallah Director General Arab Planning Institute

Co- Editor

Dr. Walid Abdmoulah Deputy Director General Arab Planning Institute

Managing Editor

Mr. Sharifah Hamadah Researcher Arab Planning Institute

Advisory Board

Hazem El-Beblawi

Professor of Economics- Former Prime Minister of Egypt-Former IMF Executive Director

Sulayman Al-Qudsi

Professor of Economics- Lebanon

Samir Al-Makdisi

Professor of Economics at the American University of Beirut-Lebanon

Abdulla Al-Quwaiz

Economic Expert- Former Assistant Secretary General for Economic Affairs GCC- Saudi Arabia

Abdellateef Al-Hamad

Former Chairman of Arab Fund for Economic and Social Development - Kuwait

Mustapha Nabli

Professor of Economics- Former Chief Economist at the World Bank MENA region-Tunisia

Riad Almomani

Professor of Economics-Vide President of Yarmouk University - Jordan

Editorial Board

Ashraf Elaraby

Professor of Economics -President of the Institute of National Planning (Egypt)

Belkacem Laabas

Professor of Econometrics- Chief Economist at the Arab Planning Institute- Algeria

Ihab Magableh

Professor of Economics- Head of the regional SMEs center- Jordan

Faisal Al-Monawer

Professor of Public Policy- Kuwait

Mouna Cherkaoui

Professor of Econometrics - Mohammed V University - Morocco **Moez Al-Obaidi**

Professor of Econometrics - University of Monastir-Tunisia

Correspondence should be addressed to:

The Editor - Journal of Development and Economic Policies The Arab Planning Institute, P.O.Box 5834 Safat 13059, Kuwait Tel (965) 24843130 - 24844061 Fax (965) 24842935 E-mail: jodep@api.org.kw

English Content

Impact	of	VAT	Reforms	on	Moroccan	Household's	Food	Consumption:
Microsi	mul	ation A	Analyses T	hrou	igh the QUA	AIDS Model (2	2011 -2	014).

Mounia Bettah Abdeljaouad Ezzrari Mohamed Mourji

Role of Policies in Stimulating Renewable Energy in Arab Countries.

Sahar Aboud 45

5

Journal of Development and Economic Policies, Vol. 24, No. 2 (2022) 5 - 43 Arab Planning Institute

Impact of VAT Reforms on Moroccan Household's Food Consumption: Microsimulation Analyses Through the QUAIDS Model (2001-2014)

Mounia Bettah* Abdeljaouad Ezzrari** Mohamed Mourji***

Abstract

This study consists in determining how changes in indirect taxation, particularly VAT, affect differently various groups of household consumption's structure. To do so, a Quadratic Almost Ideal Demand System (QUAIDS) is applied to data from the 2000/2001 and 2013/2014 National Household Consumption and Expenditure Surveys in order to estimate elasticities of demand for eight food groups and at the level of five household strata. Living standard differences of the diverse layers of the population make their preferences and reactions to economic shocks very different and change over time. It appears that Moroccan households tend to consume less vegetables and high-calorie products (sugars and cereals) and more fruit and protein-rich foods (meat, fish, fats, milk and dairy products). Moreover, the poorest households consume insufficient quantities of nutritious food products such as dairy products, fish and fruit in 2014, compared to 2001. It also shows that extending the scope of VAT to basic products, especially cereals, would affect Moroccan households' consumption patterns, especially the poorest, for cereals as well as for other products rich in nutrients such as fish and fruit.

تأثير إصلاحات الضريبة على القيمة المضافة على استهلاك الأسر المغربية: تحليل بالمحاكاة الجزئية من خلال نموذج QUAIDS (2014-2001)

مونيا بطاح عبدالجواد إزراري محمد مورجي

ملخص

يتمثل هذا العمل في تحديد كيفية تأثير ترتيبات الضرائب غير المباشرة، لا سيما الضريبة على القيمة المضافة، على هيكل استهلاك مختلف طبقات الأسر المغربية وللقيام بذلك، قمنا بتطبيق نظام الطلب التربيعي الشبه مثالي"QUAIDS"، باستعمال بيانات المسح الوطني لاستهلاك وإنفاق الأسر المغربية لسنوات 2001/2000 و2013/2013، من أجل تقدير مرونة الطلب لثماني مجمو عات غذائية من طرف مختلف طبقات الأسر. مع العلم أن اختيارات وردود أفعال هذه الاسر تجاه الصمنات الاقتصادية تختلف على حسب المستوى المعيشي وتتغير بمرور الزمن. في الواقع، يبدو أن الأسر المغربية تميل إلى تقليل استهلاكها من الخضار والمنتجات الغنية بالسعرات الحرارية (السكريات والحبوب) لصالح الرفع من استهلاكها منتجات كالفواكه والأطعمة الغنية بالبروتينات (اللحوم والأسماك والدهون والحليب ومشتقاته). وبالإضافة إلى ذلك، تستهلك الأسر الفقيرة كميات غير كافية من المنتجات الغنية غذائيا كمنتجات الألبان والأسماك والفواكه في عام 2014، على عكس عام 2001. كما يبدو أن توسيع نطاق الضربية على القيمة المضافة على المنتجات الأخرى الغنية غذائيا مثل الأسماك والفواكه في عام 2014، من شأنه أن يؤثر على هيكل استهلاك الأسر المغربية، وخاصة الفقيرة منها، سواء بالنسبة للحبوب أو للمنتجات الأخرى الغنية غذائيا مثل الأسماك والفواكه.

^{*} Professor- Researcher in Economics at Mohammed V University -LEA- FSJES Agdal- Morocco. Email: mounia bettah@yahoo.fr

^{**}PhD- researcher in economics affiliated to LASAARE and head manager at the Moroccan High Commission for Planning. Email: ezzrari@yahoo.fr.

^{***}Director of LASAARE and Professor at Hassan II University, Faculty of Juridical, Economic and Social Sciences Ain Chock –Casablanca- Morocco. Emails: fmourji@gmail.com.

1. Introduction

In Morocco, the Value Added Tax (VAT) constitutes 70% of indirect taxes revenues and 36% of overall tax revenues, on average over the last decade, representing the main source of funding for the State and local authorities' budget.

Because of its importance, Morocco has been led to undertake a gradual reform of VAT, which since 1986 tried, through rate differentiation and exemptions, to make it an instrument of equity and redistribution. Until 1986, the Turnover Tax "TCA", prior to VAT, had 11 different rates which were reduced to 6 when VAT have been introduced on 1992, then to 5 rates currently (0%, 7%, 10%, 14% and 20%).

However, poverty and inequality are still considered the most important problems in Morocco. In fact, more than 1.6 million people are considered poor and 4.2 million vulnerable, although the situation has generally improved: in recent years, monetary poverty and vulnerability have decreased by 4.8% and 12.5% respectively between 2001 and 2014 and Gini coefficient has slightly reduced from 39,9 in 1985 to 39,5 in 2014 (HCP⁽¹⁾, World Bank; 2017).

Those inequalities are mostly observed at the level of household expenditure: poor households benefit least from the VAT rates differentiating policy. They also spend more than half of their expenditure on food, while the wealthiest ones spend only a quarter of their expenditure on it. It's important to mention that food consumption is characterized by strong disparities between the wealthiest 10% of the population and the poorest 10%. These disparities are very marked for nutritionally rich products, notably dairy products (150.5 against 15.6 liters per person per year), eggs (191 against 35 units per person per year), meat (59.8 against 11.1 Kg per head per year), fish (25.1 against 4.8 Kg) and fruit (147 against 21.6 Kg). On the other hand, these disparities are less important for cereals, vegetables, oils and sugars (HCP 2016).

Furthermore, the rich class benefits the most from the subsidies: In 2014, the structure of household consumption of subsidies, according to social classes,

shows that the wealthier class benefits from 14.4% of the total subsidies, which is higher than its demographic weight of 10.0%. The middle class represents 58.7% of the population and receives 62.2% of food and butane subsidies. By product, this proportion is 60.6% for sugar, 63.0% for national soft wheat flour and 62.3% for butane. In contrast, the modest class, with a demographic weight of 31.2%, only benefits from 23% of food and butane subsidies (HCP and World Bank; 2017). Similarly, the highest quintile benefits 5 times of the reduced VAT rates (7% and 10%) compared to the poorest quintile in 2001 and 6 times in 2007⁽²⁾ (Mourji and Ezzrari, 2018; DEPF⁽³⁾, 2007).

Contrary to what was expected from its reforms, it appears that VAT with multiple rates cannot be an effective instrument for reducing income inequality (Mourji and Ezzrari, 2018). This is why the second-generation reforms have been carried out since 2005 in order to modernize this tax. They mainly aim to consolidate the principles of the VAT progressiveness and neutrality through the reorganization of its different rates: 0% for basic necessities, 10% for large consumption items, 20% as the standard rate and a higher rate for luxury goods. Also, these reforms aim to limit exemptions, especially the new ones, and tax some goods and services that are currently exempted .

From this perspective, this paper intends to evaluate the effects, in 2001 and 2014, of VAT rates changes on the food consumption structure of the Moroccan households' various strata. For this, a QUAIDS model "Quadratic Almost Ideal Demand System" is applied to the National Household Consumption and Expenditure Surveys of 2000/2001 and 2013/2014⁽⁴⁾ data produced by the HCP, in order to estimate elasticities of demand for 8 food groups by five household strata. Differences in living standards among different strata of the population mean that their preferences and responses to economic shocks are very different from each other and change over time.

QUAIDS modelling is also used to simulate the impact of the VAT reforms on the structure of food consumption of various strata of Moroccan households. In this regard, and because of the absence of details on the implementation of the proposed tax reform by the national conferences on taxation, especially those

Impact of VAT reforms on Moroccan household's food consumption: microsimulation analyses through the QUAIDS model (2001-2014)

concerning the composition of product groups (basic necessities, mass consumption or luxury goods), this paper proposes to evaluate the consequences of the VAT liability of some basic products that are currently exempted, such as cereals⁽⁵⁾, on the "superior" food products consumed volumes (such as meat and dairy products...). The purpose is to identify the households that will suffer most from an increase of strategic products prices (as a result of a higher taxation) and that will have to be targeted by direct aids, at the time of the VAT reform .

After a review of the theoretical framework that sheds light on household consumption analyses techniques as well as on the model and data used, the results of the different estimates will be discussed.

2. Theoretical framework and methodology

2.1. The demand function analysis

Consumer theory has made substantial progress over the last three decades. Today it is one of the most developed fields of economic theory. This progress has been not only theoretical but also practical.

Indeed, the establishment of comprehensive systems of demand functions (CSDF), as well as the estimation of price and income elasticities, now covers the majority of developed countries and some developing countries .

In the present paper a QUAIDS model (Quadratic Almost Ideal Demand System) is applied, which is the extension (with a quadratic form) of the AIDS model of Deaton and Muellbauer (1980) developed by James Banks, Richard Blundell, and Arthur Lewbel, in order to estimate the price and income effects of changes in VAT rates on food expenditure by different classes of Moroccan households.

2.1.1. The almost ideal demand system: AIDS

The AIDS model is built from the Working (1943) and Leser (1963) model. Deaton and Muellbauer's developments of the Working and Leser's model include

the price effect. The AIDS demand system therefore links the budget coefficients of each good to the logarithms of prices and real disposable income .

The share of expenditure spent on the good i is written as:

$$\frac{\text{Piqi}}{Y} = ai + \sum bij \ln Pi + Ci \ln \frac{Y}{P}(1)$$

where Wi is the budget share,

Y: total expenditure per household

P is the price index defined by:

$$Ln P = a_0 + \sum_k a_k Ln P_k + \frac{1}{2} \sum_j \sum_k b_{jk} Ln P_k Ln P_j (2)$$

and a_i , b_{ij} and c_i are the parameters to be estimated.

The parameters must be estimated under the following restrictions:

Additivity: $\sum_i a_i = 1$; Homogeneity: $\sum_i bij = 0$; $\sum_i ci = 0$; $\sum_j bij = 0$; and Symmetry: $b_{ij} = b_{ji}$.

Due to the non-linearity of the parameters, Deaton and Muellbauer suggest replacing the general price index P by a linear approximation of Stone's geometric index (Stone. R. 1954) as follows:

$$Ln P^* = \sum_i w_i Ln P_i \tag{3}$$

This linear approximation of the AIDS system called LA/AIDS (linear approximate/ almost ideal demand system), which is the most commonly used, greatly facilitate the estimation of the parameters.

From this simplification, a system of linear equations is obtained in respect of all their parameters that can be easily estimated by imposing the constraints Impact of VAT reforms on Moroccan household's food consumption: microsimulation analyses through the QUAIDS model (2001-2014)

previously defined. Even if the OLS estimator appears unbiased for each of the equations, it seems that the SURE (Seemingly Unrelated Regressions) estimation method proposed by Zellner (1962) is the most efficient for these systems of equations (Sadoulet and De Janvry, 1992).

Price and income elasticities are obtained from the parameters estimated as follows:

Direct price elasticity:
$$\mathbf{E}_{ij} = -\mathbf{1} + \frac{b_{ij}}{w_i} - c_i$$
 Cross price elasticity: $\mathbf{E}_{ij} = \frac{b_{ij}}{w_i} - \frac{c_i}{w_i} \, w_j$;

Income elasticity: $\eta_i = 1 + \frac{c_i}{w_i} - c_i$

2.2 The QUAIDS demand system: Introduction of a quadratic term in the AIDS model

Because of the non-linearity of the Engel curves for certain goods, the estimation of the AIDS model becomes insufficient. Consequently, Banks, Blundell and Lewbel (1997) have completed this model by introducing the square of the logarithm of income into the demand function. The AIDS model becomes the QUAIDS model (Quadratic Almost Ideal Demand System). As a result, the following system of equations is obtained:

$$W_i = a_i + \sum_j b_{ij} \ln(P_i) + c_i Ln \frac{Y}{P_s} + d_i Ln \left(\frac{Y}{P_s}\right)^2 \qquad (4)$$

Where:

Wi: represents the budgetary share of each product group in food expenditure.

Pi: the price of commodity sub-group i;

Y: is the predicted value of food expenditure obtained from the estimate made in step one;

Ps: is the Stone's geometric price index of food.

The ratio (Y/Ps) is the food expenditure deflated by the price, and makes it possible to take into account real household income.

The advantage of this specification is that it retains the existing flexibility properties in the AIDS model. In addition, it is more practical for the analysis of several goods demand and introduces relative flexibility in income and price effects.

The system is conditionally linear in d(p), Blundell and Robin (1999) propose an iteration procedure and use the iterated least squares estimator (ILLS).

Additivity, price and income homogeneity and symmetry are constraints to estimate the model parameters.

The additivity constraint that requires the sum of the budget shares to be equal to one is written as: $\sum_{i=1}^{n} a_i = 1$

The homogeneity constraint in relation to prices and income is expressed as follows: $\sum_{j=1}^{n} b_{ij} = 0$; $\sum_{i=1}^{n} c_i = 0$; $2 \sum_{i=1}^{n} a d_i = 0$ Finally, the symmetry constraint $b_{ij} = b_{ji}$.

2.3. Presentation of the data and of the performed treatments

To estimate the elasticities of demand, three kinds of data are generally required: household income (or total expenditure), the quantity consumed of different goods and their purchase prices. When considering differences across the various population strata, it is necessary to have a representative sample for each household group.

Data used in this study are from two national surveys on household consumption and expenditure, one of 2000/2001 and the other of 2013/2014, carried out by the HCP throughout the Moroccan territory on a sample of 14.243 households in 2000/2001 and 16.000 households in 2013/2014.

In this study, five social classes $^{(6)}$ have been selected as described in the following table:

Impact of VAT reforms on Moroccan household's food consumption: microsimulation analyses through the QUAIDS model (2001-2014)

Table (1): Definition of social classes

Classes	Description
Poor and vulnerable	Per capita expenditure ≤ (relative threshold = 0.6× median per capita expenditure)
Modest	$0.6 \times \text{median per capita}$ expenditure < per capita expenditure $\leq 0.75 \times \text{median per capita}$ expenditure
Lower average	$0.75 imes$ median expenditure per capita < expenditure per capita \leq median expenditure per capita
Upper average	The median expenditure per capita \leq per capita \leq 2.5 \times the median expenditure per capita
Wealthy	Expenditure per capita $> 2.5 \times$ median expenditure per capita

This paper considers the absolute poverty line⁽⁷⁾ adopted by the HCP for 2001 and for 2014. In 2001 (HCP, 2006) it was 3421 DH for urban areas, 3098 DH for rural areas (per capita and per year), and in 2014, it was 4667 DH in urban areas and 4312 DH in rural areas (HCP, 2016).

Also, 8 groups of food products consumed by different types of households have been selected from the analytical nomenclature of goods and services. Aggregating the groups of products allows us to reduce the number of missing values, which poses statistical complications when estimating the parameters.

The goods classification is the same as used in the analytical nomenclature of goods and services presented by the HCP. However, our analysis will focus on eight product groups: "Cereals", "Milk and milk products", "Fats", "Meat", "Fish", "Vegetables", "Fruits" and "Other food goods". It should be mentioned that the quantities demanded of the different food products in the study are all expressed in kilograms.

Before proceeding with the estimation of the demand parameters themselves, a major data reconciliation exercise was carried out, especially with regard to the prices (or unit values) of the products. In fact, outliers have been removed and the product prices have been replaced with their averages by region. This regional variability may be due to the costs linked to transport from the point of production to the points of actual consumption of the products (Deaton Angus (1988)).

2.4. Estimation method

As already mentioned, this study adopts the QUAIDS model to describe household food consumption behavior. The parameters of the model are estimated by the two-step SURE (Seemingly Unrelated Regressions) method developed by Zellner (1962) and specified by Surabhi Mittal (2010) for the food sector in India.

The two-stage QUAIDS model is fundamentally based on the assumption of separability of preferences (Deaton and Muellbauer 1980) of households in their budget allocation between commodity groups and sub-groups.

The SURE method is widely used in the literature for the estimation of flexible demand models (such as AIDS, QUAIDS, IQUAIDS). Indeed, for a given system, the equations interact with each other, implying correlations between the error terms of the different equations. The advantage of the SURE estimator is that it takes into account these correlations by regressing each equation independently and with a specific error term (Zellner, 1962) .

In order to evaluate the expenditure and price elasticities, they are calculated as follows:

Expenditure elasticity (or conditional elasticity) of product group i:

$$\eta_i = \left(c_i + \frac{2d_i \operatorname{Ln}(Y)}{w_i}\right) + 1 \tag{5}$$

Non-compensated price elasticity⁽⁸⁾:

$$\varepsilon_{ij} = \left(\frac{b_{ij}}{w_i}\right) - \left(c_i + 2d_i \operatorname{Ln}(Y)\right) \left(\frac{w_j}{w_i}\right) - K_{ij}$$
 (6)

Y: is the predicted value of the food expenditure deducted from the estimate made in the first step;

 K_{ij} : designates the Kronecker delta which is equal to 1 for direct price elasticities and equal to 0 for cross price elasticities;

 W_i : refers to the budget share of group i used, inter alia, to calculate Stone's price index.

Based on the expenditure elasticity and the non-compensated price elasticities, direct and cross-price elasticities pure or compensated⁽⁹⁾ have been deduced from Slutsky as follows:

$$\varepsilon_{ij}^{H} = \varepsilon_{ij} + W_{i}\eta_{i} \tag{7}$$

The unconditional elasticity of aggregate demand for each commodity group $i \ll \eta_i^y \gg$ is obtained as the multiple of the conditional elasticity and the elasticity of food expenditure relative to total expenditure (η^y) obtained from the first stage estimation: $\eta_i^y = \eta_i * \eta^y$ (8)

The expenditure elasticities of the different goods were estimated for each strata (Table 3). These elasticities measure the change in the quantity demanded of a good as a result of a change in total expenditure. Since total expenditure is used as a proxy for income, expenditure elasticities are, therefore, interpreted as income elasticities. However, they do not mean exactly the same thing in the sense that total expenditure includes the quantities requested themselves and describe the outcome of the consumption attitude of individuals .

3. Results

3.1. Budget coefficients and total expenditure elasticities by social class between 2001 and 2014

The analysis of the budgetary coefficients (table 2) shows that between 2001 and 2014, the food basket of Moroccans tends more to be balanced and diversified while keeping almost the same structure. Among the food groups selected, Moroccan household expenditure is mainly assigned to the "Meat" group with a share of 23% in 2014, up 3 points compared to 2001. However, households have reduced their consumption of calorie-rich products, particularly "other food items" and "cereals", by 4 and 5 points compared with 2001, representing 18% and 17% respectively of total expenditure in 2014.

Moroccans have also reduced their consumption of vegetables by 2 points, representing 12% in 2014, to consume more "milk and dairy products" (+1pts), fats (+2pts), fish (+2pts) and fruit (+1pts).

Thus, Moroccan households tend to consume less vegetables and products rich in calories (other food items - especially sugars and sweet products - as well as cereals) and more fruit and protein-rich foods (meat, fish, fats, milk and dairy products).

			2000/2	001			2013/2014						
	National	C1	C2	C3	C4	C5	National	C1	C2	C3	C4	C5	
Cereals	22%	28%	25%	23%	20%	16%	17%	20%	19%	18%	17%	13%	
Milk and	7%	4%	5%	6%	7%	10%	8%	6%	7%	8%	9%	10%	
dairy products													
Fat	9%	10%	9%	9%	9%	7%	11%	13%	12%	12%	11%	9%	
Meat	20%	16%	18%	19%	22%	23%	23%	22%	23%	23%	23%	24%	
Fish	2%	2%	2%	2%	2%	3%	4%	3%	3%	3%	4%	5%	
Vegetables	14%	14%	15%	14%	13%	11%	12%	15%	14%	14%	12%	9%	
Fruits	5%	3%	3%	4%	5%	7%	6%	4%	5%	6%	7%	8%	
Other food	22%	24%	23%	23%	22%	22%	18%	18%	17%	17%	18%	21%	
items													

Table (2): Budget shares "Wi" by food groups at national level and by stratum

 $C1: Poor \ and \ vulnerable; C2: \ Modest; C3: \ Lower \ average; C4: \ Upper \ average; C5: \ Wealthy.$

Calculations realized by the HCP based on ENCDM 2000/2001 and 2013/2014.

At the level of the five household groups (Table 2) it's observed that :

- The shares of the "meat" and "other food items" groups are predominant in the food basket of the different groups, as at the national level;
- Data from the 2013/2014 survey shows that an improvement in household income increases the consumption of nutritionally rich products, particularly dairy products (+4pts), fruit (+4pts) and fish (+2pts), which account for 10%, 8% and 5% respectively of the food consumption of the wealthiest households, compared with 6%, 4% and 3% of the food basket of the poor;
- On the other hand, the rich households consume less cereals (13%), fats (9%) and vegetables (9%) than the poor (20%), (13%) and (15%) respectively.
- Compared to the 2000/2001 survey data, the richest households improved their consumption of fish (+2pts), fats (+2pts), fruit (+1pt) and meat (+1pt) instead of cereals (-3pts), vegetables (-2pts) and other food items (-1pt).
- Concerning the poorest classes, it's noticed that between 2001 and 2014, they have significantly improved their consumption of meat (+6pts), to represent 22% of their budget in 2014, and to a lower extent the consumption of fats (+3pts), milk and dairy products (+2pts), fish (+1pt), vegetables (+1pt) and fruit (+1pt). However, their consumption has fallen by 8 points for cereals, which occupy only 20% of their food basket in 2014, and by 6 points for other food items (18% in 2014).

Table (3): Expenditure elasticities by food commodity groups at the national level and by strata

			2000/2	001			2013/2014						
	National	C1	C2	С3	C4	C5	National	C1	C2	С3	C4	C5	
Cereals	0.56	1.24	1.39	1.01	0.92	1.32	0.98	1.23	1.34	1.32	1.22	1.18	
Milk and dairy products	1.28	0.34	0.72	0.34	0.21	0.04	1.22	1.15	1.18	1.12	1.07	1.09	
Fat	1.19	0.49	0.52	0.84	1.24	1.18	0.85	0.77	0.79	0.79	0.86	0.85	
Meat	1.15	0.49	1.48	1.44	1.32	1.50	0.80	0.57	0.46	0.45	0.58	0.64	
Fish	1.05	0.50	-1.09	-0.50	1.10	1.06	0.96	1.18	0.69	0.74	0.70	0.76	
Vegetables	0.74	1.05	1.38	0.45	0.77	0.88	0.98	1.30	1.31	1.32	1.27	1.31	
Fruits	1.39	0.77	1.30	-0.32	-0.43	-0.55	1.49	1.69	1.68	1.54	1.56	1.26	
Other food items	1.21	1.42	0.32	1.53	1.38	1.18	1.13	0.95	1.02	1.11	1.07	1.13	

 $C1: Poor \ and \ vulnerable; C2: \ Modest; C3: Lower \ average; C4: \ Upper \ average; C5: \ Wealthy.$

Authors' calculations from ENCDM 2000/2001 and 2013/2014

Overall, the expenditure elasticities obtained are statistically significant and, at the national level, they are statistically different from zero (Table 3).

At the national level, it can be observed that the expenditure elasticities of meats, fats and fish are below 1 in 2014, in contrast to 2001, which means that these products are increasingly becoming essential or mass consumption items, as is the case of "cereals and cereal products" and "vegetables", which are characterized by expenditure elasticities below 1 since 2001. These goods can, moreover, be considered as essential or incompressible goods. Their consumption is not very sensitive to a variation in total expenditure. As soon as the standard of living exceeds the subsistence level, other needs (luxury goods) appear to absorb an increasingly important part of the income growth.

Furthermore, the elasticities of the "milk and dairy products", "fruit" and "other food items" groups are structurally greater than 1, reflecting the fact that expenditure on these items increases more than proportionally to income growth. Thus, the quantity demanded for these products varies more than proportionally when the budget allocated to food varies either up or down.

By household class, the consumption behavior varies significantly. Among poor households, for example, it's noticed that:

- In 2014, these households have increased their consumption of products, with total expenditure elasticities relatively close to 1, i.e., "other food items" (0.95%) and fats (0.77%) in proportion as their expenditure on food is risen.
- The elasticity of meat is 0.56% in 2014 against 0.49% in 2001. This means that this group of products is a basic necessity (or a large consumed food) for the poor and that its consumption is not very sensitive to a variation in total expenditure.
- The other nutritionally rich food groups, namely the 'milk and milk products', 'fish' and 'fruit' groups, are on average being consumed in insufficient quantities by the poor and vulnerable people in 2014, in contrast to 2001, so these commodities are the most qualified to absorb any increase in their budgets. These products have expenditure elasticities exceeding 1 in 2014, of 1.15% for

milk and dairy products, 1.18% for fish and 1.7% for fruit, compared to 0.34%, 0.50% and 0.77% respectively in 2001.

3.2. Direct price elasticities

Estimates of direct price elasticities, which measure the reaction of the demand for a product to changes in its price, are shown in Table 4. It appears that all these elasticities are statistically significant and, in accordance with theory, negative, except for fish, which shows, in 2001, a positive value of direct price elasticity at the national level and for the first 3 classes of households (C1, C2 and C3). This could be explained by the fact that these classes are ready to consume this product whatever its price.

At national level, the most sensitive products to price variations, according to the two surveys, are "other food items", "cereals and cereal-based products", "meat" and the "milk and dairy products" group, with elasticities of -1.01, -0.91, -0.88 and -0.83 respectively in 2014 instead of -1.04; -0.87, -1.13 and -0.79 respectively in 2001. This implies that a rise in prices will generate a sharp drop in the quantities requested for these goods .

By social class, direct price elasticities are slightly higher in absolute terms among the poorest households than among the wealthier ones, and are still higher overall in 2014 compared with 2001, especially for meat, cereals, milk and dairy products and fish. As a result, a 1% increase in the price of meat, for example, will result in decreases of 1.02% and 0.65% in the quantities demanded respectively among the very poor and the rich groups in 2014 compared to decreases of 1.02% and 0.93% respectively in 2001.

			2000/2	001			2013/2014						
	National	C1	C2	C3	C4	C5	National	C1	C2	С3	C4	C5	
Cereals	-0.87	-0.93	-0.94	-0.89	-0.93	-0.94	-0.91	-0.95	-0.97	-0.97	-0.93	-0.76	
Milk and	-0.79	-0.63	-0.77	-0.73	-0.78	-0.62	-0.83	-0.89	-0.82	-0.83	-0.782	-0.79	
dairy													
products													
Fat	-0.28	-0.12	-0.16	-0.19	-0.42	-0.33	-0.41	-0.34	-0.33	-0.32	-0.42	-0.38	
Meat	-1.13	-1.02	-1.08	-1.06	-0.78	-0.93	-0.88	-1.02	-0.91	-0.82	-0.77	-0.65	
Fish	0.13	0.40	0.26	0.24	-0.18	-0.16	-0.09	-0.22	-0.32	-0.11	-0.18	-0.15	
Vegetables	-0.63	-0.73	-0.79	-0.63	-0.84	-0.69	-0.75	-0.81	-0.86	-0.86	-0.84	-0.89	
Fruits	-0.62	-0.27	-0.53	-0.55	-0.82	-0.58	-0.78	-0.59	-0.77	-0.76	-0.82	-0.79	
Other food	-1.04	-1.10	-0.84	-1.12	-1.01	-1.02	-1.02	-0.99	-1	-1.02	-1.01	-1.03	
items													

Table (4): Direct price elasticities at the national level and by strata

C1: Poor and vulnerable; C2: Modest; C3: Lower average; C4: Upper average; C5: Wealthy.

Authors' calculations from ENCDM 2000/2001 and 2013/2014

3.2.1. Cross-price elasticities

Cross-price elasticities measure the response of the quantity demanded of one good to the variation in the price of another good. The positive or negative sign of the cross-price elasticity shows whether goods are substitutes or complements.

Table 5 presents the cross-price elasticities at the national level⁽¹⁰⁾ with values other than zero. The diagonal of the matrix represents the non-compensated direct price elasticities.

Cross-price elasticities seem very $low^{(11)}$, on average in 2014 compared to 2001, especially for some goods such as " cereals ", " fats ", " milk and dairy products ", " vegetables " and " other food items ". This means that the variation in the prices of these goods affects less the consumption of other goods. This leads to relatively insignificant substitution or complementarity effects .

Moreover, cross-price elasticities are more significant, in 2014, for "fish" and "meat". Indeed, the increase in the prices of "fish" and "meat" particularly affects the consumption of other types of goods. In fact, households react differently to the increase in meat and fish. For them, meats are considered substitutes,

especially with fish, with an elasticity of +0.28%, while fish is rather complementary with other goods (especially fats with an elasticity of -0.34%).

Table (5): Non-compensated price elasticities of demand by food groups at national level 2000/2001

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.87	0.11	-0.34	0.19	-0.32	-0.04	-0.31	-0.05
Milk and dairy products	0.35	-0.79	-0.09	-0.14	-0.04	0.03	-0.02	-0.16
Fat	0.10	-0.11	-0.28	-0.12	-0.24	-0.04	-0.07	-0.11
Meat	0.31	-0.14	-0.12	-1.13	-0.23	-0.03	-0.03	-0.02
Fish	0.91	-0.07	-0.13	-0.31	0.13	0.21	-0.04	-0.49
Vegetables	0.12	-0.09	-0.16	-0.08	-0.03	-0.63	-0.14	-0.11
Fruits	0.40	-0.03	-0.07	-0.15	-0.01	0.06	-0.62	-0.20
Other food items	0.08	-0.02	0.01	0.01	-0.25	-0.03	0.15	-1.04

Authors' calculations based on ENCDM 2000/2001.

Table (6): Non-compensated price elasticities of demand by food groups at the national level 2013/2014

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.912	0.057	-0.146	0.094	-0.139	0.005	-0.075	-0.027
Milk and dairy products	0.041	-0.827	-0.093	0.123	-0.059	-0.033	-0.030	-0.051
Fat	-0.097	-0.165	-0.404	0.032	-0.339	0.014	-0.107	-0.049
Meat	0.043	-0.021	-0.128	-0.884	-0.096	-0.097	-0.064	0.054
Fish	-0.012	-0.070	-0.061	0.280	-0.094	-0.006	-0.090	-0.142
Vegetables	0.008	-0.067	0.028	0.034	-0.047	-0.751	-0.127	-0.072
Fruits	-0.013	-0.032	-0.020	0.159	-0.064	-0.051	-0.780	-0.024
Other food items	-0.021	-0.017	-0.010	0.117	-0.157	-0.056	0.106	-1.015

Authors' calculations based on ENCDM 2000/2001

4. Simulations of the effects of a VAT change on cereals

Reforms of the indirect tax system, through changes in VAT rates, lead to changes in prices to which consumers are exposed. In this paragraph, noncompensated price elasticities have been used to run simulations (Allen 2010) in order to predict the impact of commodity VAT reforms on the consumption behavior of various quintiles of households .

This paper considers a 20% price increase of the "cereals and cereal-based products" group, which is actually exempt from VAT, to evaluate the effect of this price increase on the considered commodities. It is however assumed that the observed VAT increase is fully reflected in the price of cereals .

The table below summarizes the non-compensated cross-price elasticities of cereals.

Table (7): Summary of non-compensated cross-price elasticities of demand for food groups relative to cereals at national level and by stratum

			200	1			2014						
Social class Product	National	C1	C2	С3	C4	С5	National	C1	C2	С3	C4	C5	
	0.0=					0.01						0.7	
Cereals	-0.87	-0.93	-0.94	-0.89	-0.91	-0.94	-0.91	-0.95	-0.97	-0.97	-0.93	-0.76	
Milk and	0.11	-0.02	0.13	0.18	0.14	0.11	0.06	0.08	0.09	0.10	0.11	-0.01	
dairy products	0.11	-0.02	0.13	0.16	0.14	0.11	0.00	0.08	0.09	0.10	0.11	-0.01	
Fat	-0.34	-0.41	-0.42	-0.42	-0.29	-0.22	-0.15	-0.27	-0.26	-0.19	-0.14	-0.13	
Meat	0.19	0.28	0.10	0.13	0.07	-0.12	0.09	0.25	0.24	0.18	0.12	0.11	
Fish	-0.32	-0.51	-0.48	-0.40	-0.30	-0.18	-0.14	0.00	-0.07	-0.05	-0.09	-0.19	
Vegetables	-0.04	-0.08	-0.09	-0.04	-0.05	-0.05	0.00	-0.07	0.00	-0.03	0.00	-0.06	
Fruits	-0.31	-0.32	-0.28	-0.25	-0.18	-0.04	-0.07	-0.16	-0.06	-0.01	-0.06	-0.01	
Other food items	-0.05	-0.11	0.10	-0.15	-0.11	-0.04	-0.03	-0.04	-0.06	-0.04	-0.04	-0.03	

C1: Poor and vulnerable; C2: Modest; C3: Lower average; C4: Upper average; C5: Wealthy. Authors' calculations based on ENCDM 2000/2001 and ENCDM 2013/2014

Considering that the elasticity (Eij) of the demand for good i in relation to good j is written as follows :

Eij= Variation in % of the quantity demanded of good i / Variation in % of the price of good j

Thus, for a 20% variation in the price of cereals, the variation in the quantity requested from group i (in %) is equal to the cross-price elasticity of demand for good i in relation to cereals multiplied by 20%. The results for each group of goods are summarized in Table 8.

Table (8): Percentage changes in the quantity consumed of each product group and per stratum as a result of a 20% VAT increase on cereals.

			200	1			2014						
Social class Product	National	C1	C2	С3	C4	C5	National	C1	C2	С3	C4	C5	
Cereals	-17.3	-18.6	-18.9	-17.7	-18.2	-18.7	-18.2	-18.9	-19.5	-19.5	-18.6	-15.3	
Milk and													
dairy	2.1	-0.3	2.6	3.6	2.7	2.2	1.1	1.5	1.7	2.0	2.2	-0.2	
products													
Fat	-6.8	-8.1	-8.3	-8.5	-5.8	-4.4	-2.9	-5.3	-5.3	-3.8	-2.8	-2.6	
Meat	3.8	5.6	1.9	2.6	1.4	-2.5	1.9	4.9	4.7	3.7	2.4	2.2	
Fish	-6.4	-10.1	-9.5	-8.0	-6.0	-3.5	-2.8	0.1	-1.5	-0.9	-1.9	-3.9	
Vegetables	-0.7	-1.6	-1.7	-0.8	-0.9	-1.1	0.1	-1.3	0.0	-0.6	0.0	-1.3	
Fruits	-6.3	-6.5	-5.6	-4.9	-3.5	-0.8	-1.5	-3.1	-1.2	-0.1	-1.1	-0.2	
Other food items	-1.0	-2.2	2.0	-2.9	-2.3	-0.9	-0.5	-0.8	-1.2	-0.8	-0.8	-0.7	

C1: Poor and vulnerable; C2: Modest; C3: Lower average; C4: Upper average; C5: Wealthy. Authors' calculations based on ENCDM 2000/2001 and ENCDM 2013/2014

The simulation results show that a 20% increase in VAT on cereals would lead to a decrease in the domestic consumption of cereals by 17.3% in 2001 and 18.9% in 2014. At the group level, this impact would lead to an 18.6% drop in poor and vulnerable households' demand in 2001, which will increase by 0.4 points in 2014.

In contrast to the poorest classes, the impact on the richest households is lighter, and their demand for cereals will only decrease by 15.3% in 2014 instead of 18.7% in 2001, which represents a reduction of 3.5 points. Thus, the VAT reforms, which aim to broaden the tax base by imposing taxes on basic products, such as cereals, would have an increasingly significant impact on the poor and vulnerable households' demand for cereals .

The by-product analysis shows that in 2001 this reform would reduce the quantities demanded for the majority of the product groups analyzed, especially fats (-6.8%), fish (-6.4%) and fruit (-6.3%). However, demand of "milk and dairy products" and "meat" groups would increase by 2.1% and 3.8% respectively in 2001.

These decreases would be clearly moderated in 2014. The most significant would be about -2.9% for fats, -2.8% for fish and -1.5% for fruit.

Also, these reductions would be more pronounced among the poorest households, for all products except meat, especially the demand for fish (-10.1%), fats (-8.1%) and fruit (-6.5%), which would also be significantly reduced in 2014 (0.1%, -5.3% and -3.1% respectively).

The rest of the products, namely "vegetables" and "other food items", would have lower variations and their demand would be less affected by an increase in the VAT rate on cereals.

Generally, the extension of the scope of VAT to basic products, particularly cereals, would affect the consumption structure of households, especially the poorest ones, both as to the cereals themselves but also to other products, particularly nutrient-rich products such as fish, fruit, fats and, to a smaller degree, vegetables and other food items.

5. Conclusion

This paper examined how changes in indirect taxation, particularly VAT, affect differently the consumption structure of different strata of Moroccan households. For this purpose, the Quadratic Almost Ideal Demand System (QUAIDS) is applied to data from the 2000/2001 and 2013/2014 National Household Consumption and Expenditure Surveys to estimate elasticities of demand for eight food groups and for five household strata. Differences in livings standards of different strata of the population mean that their preferences and responses to economic shocks are very different from each other and vary over time.

It appears that Moroccan households tend to consume less vegetables and high-calorie products (sugars and cereals) and more fruit and protein-rich foods (meat, fish, fats, milk and dairy products). Moreover, the poorest households consume insufficient quantities of nutritious food products such as dairy products, fish and fruit in 2014, compared to 2001. In addition, extending the scope of VAT to basic products, especially cereals, would affect Moroccan households' consumption patterns, especially the poorest one, for cereals as well as for other products rich in nutrients such as fish and fruit.

Finally, this partial equilibrium analysis could be extended and enriched by a general equilibrium approach in order to identify the behavior of the different economic actors in the analysis of the impact of a VAT reform .

Footnote

- (1) HCP: Haut commissariat au plan
- ⁽²⁾ The fifth quintile gets 1354 million MAD in 2001 and 4614 million MAD in 2007, while the first quintile gets only 272 million MAD in 2001 and 770 million MAD in 2007.
- (3) Financial Studies and Forecasting Department of the Moroccan Ministry of Economy and Finance.
- ⁽⁴⁾ Source: HCP, Micro-data from the National Household Consumption and Expenditure Survey 2013/14 available online at www.hcp.ma.
- (5) According to the classification used in this document and detailed below, cereals represent 20% of the consumption of the "Poor and Vulnerable" class, 19% of the consumption of the "Modest" class, 18% of the consumption of the "Lower Average" class, 17% of the consumption of the "Upper Average" class and 13% of the consumption of the "Wealthy" class.
- (6) This classification is inspired from Mourji and Ezzrari (2018).
- (7) Absolute poverty line: it is the sum of the food poverty line and a non-food allowance equivalent to the cost of non-food purchases made by households that actually reach the minimum food requirement (World Bank method).
- ⁽⁸⁾ Non-compensated price elasticity: adjustment of the quantity demanded after price change including the effect on disposable income.
- (9) They are used to highlight changes in demand due only to price changes. Total expenditure virtually varies in the same direction as the price change in order to keep the household's purchasing power constant.
- (10) Details of the cross-price elasticities per stratum are presented in the appendix.
- (11) In absolute values less than 0.1.

References

ALLEN T. (2010). Impacts des variations de prix sur la qualité nutritionnelle du panier alimentaire des ménages français. Thèse (Dr en Sciences Economiques) : Université Montpellier 1, Montpellier (France). 245p. + annexes 83p. Ecole Doctorale : EDEG Economie et Gestion de Montpellier - ED 231.

Banks, J., Blundell, R., and Lewbel, A. (1997). Quadratic Engel curves and consumer demand. Review of Economics and statistics, 79(4), 527-539.

BETTAH. M, 2008. Analyse de l'impact des réformes de la TVA sur la structure de consommation de la population pauvre au Maroc. Mémoire de DESA en économétrie appliquée FSJES Ain Chock-Casablanca.

BOSSOH. W, 2012. Taux de tva et structure de consommation des ménages au Maroc : Utilisation du modèle QUAIDS. Rapport de stage au Laboratoire de Statistique Appliquée à l'Analyse et à la Recherche en Economie/ Maroc.

Deaton, A. (1987). Estimation of own-and cross-price elasticities from household survey data. Journal of Econometrics, 36(1-2), 7-30.

Deaton, A. (1988). Quality, quantity, and spatial variation of price. The American Economic Review, 418-430.

Deaton, A., and Muellbauer, J. (1980). An almost ideal demand system. The American economic review, 70(3), 312-326.

DEPF. (2007). Évaluation de l'équité de la TVA au Maroc. Ministère de l'Economie et des Finances du Maroc.

HCP, World Bank. (2017). Pauvreté et prospérité partagée au Maroc du troisième millénaire, 2001 – 2014. Novembre.

HCP. (2002). Élasticités revenu de la demande des ménages.

HCP. (2006). Cahier du plan n°9.

HCP. (2013). Résultats de l'Enquête Nationale sur la Consommation et les Dépenses des Ménages 2000/2001 .

HCP. (2016). Présentation des résultats de l'Enquête Nationale sur la Consommation et les Dépenses des ménages 2013/2014. Inégalités sociales et territoriales à la lumière des résultats de l'enquête nationale sur la consommation et les dépenses des ménages 2014.

HCP. Nomenclature analytique des biens et services.

Leser, C. E. V. (1963). Forms of Engel functions. Econometrica: Journal of the Econometric Society, 694-703.

Mittal, S. (2010). Application of the QUAIDS model to the food sector in India. Journal of Quantitative Economics, 8(1), 42-54.

MOURJI. F, EZZRARI. A. (2018). Taux différenciés de la TVA et inégalité. Communication présentée au Symposium International « Les logiques et la portée des modèles économiques : vers un éclairage du modèle du Maroc » les 21 – 23 mars 2018 – Université Hassan II – FSJES Ain Chock Casablanca.

STONE. R. (1954). Linear Expenditure Systems and Demand Analysis: An Application the Pattern of British Demand. Economic Journal, Vol. 64, #255, 511–527.

Working, H. (1943). Statistical laws of family expenditure. Journal of the American Statistical Association, 38(221), 43-56.

World Bank. (2018). Pauvreté et prospérité partagée au Maroc du troisième millénaire 2001-2014.

ZELLNER. A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias. Journal of the American Statistical Association Vol. 57, No. 298 (Jun. 1962), pp. 348-368.

Appendix (1): Composition of the 8 food product groups analysed according to the HCP nomenclature of goods and services

Cereals and cereal-based products	Milk and dairy products	Fat	Meat	Fish	vegetables	Fruits	Other food items
011 Non- processed cereals (into grains)	021 untreated fresh milk	031 butter	041 beef and veal	051 fresh fish	06 fresh vegetables	081 citrus fruits	09 sugar, sugar products, chocolate-based products and products for desserts and pastries
012 purchased bread	022 long- life pasteurized milk	032 Oil	042 sheep or lamb meat	052 fresh shellfish and molluscs	07 dried or canned vegetables	082 fresh seeded fruit	10 chocolate- based breakfast products, dessert and pastry products
013 flour	023 condensed milk	033 other fats	043 other butcher meats	053 canned fish		083 fresh stoned fruits	11 tea, coffee and herbal teas
014 semolina	024 powdered milk		044 living animals	054 frozen or deep- frozen fish		084 dried fruit	12 food seasonings and various food products n.c.a
015 couscous	025 whey		045 tripery			085 oleaginous fruits	13 non- alcoholic beverages
016 alimentary pastas	026 cheese		046 charcuterie			086 tropical fruits	14 alcoholic beverages
017 other cereal- based products	027 other milk-based products		047 birds, rabbit and prey "non- live"			087 prepared fruits	15 food and drink taken outdoors
	028 baby milk and milk products		048 birds, rabbit and prey "live"			088 fruit mixture	17 various expenses related to the acquisition of food products (n.c. transport)
	029 eggs		049 other edible animals				18 exceptional expenses: purchases of food products

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

Appendix (2): Estimated parameters from the QUAIDS model (ENCDM 2000/2001)

1- Estimated parameters for the poor/vulnerable strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.567	-0.225	0.098	0.834	0.000	0.052	-0.088	0.896
	0.013	0.018	0.397	0.000	0.999	0.701	0.209	0.000
Cereals	0.038	-0.001	-0.041	0.038	-0.008	-0.011	-0.009	-0.006
	0.000	0.747	0.000	0.000	0.000	0.006	0.000	0.000
Milk and dairy products	-0.001 0.747	0.014 0.000	0.000 0.773	-0.004 0.041	-0.002 0.004	-0.001 0.582	-0.001 0.388	-0.006 0.000
Fat	-0.041 0.000	0.000	0.081	-0.010 0.001	-0.003 0.003	-0.017 0.000	-0.004 0.000	-0.005 0.009
Meat	0.038	-0.004	-0.010	-0.017	-0.003	-0.005	0.001	0.000
	0.000	0.041	0.001	0.002	0.030	0.153	0.696	0.978
Fish	-0.008	-0.002	-0.003	-0.003	0.021	0.004	-0.002	-0.007
	0.000	0.004	0.003	0.030	0.000	0.004	0.001	0.000
Vegetables	-0.011	-0.001	-0.017	-0.005	0.004	0.041	-0.005	-0.005
	0.006	0.582	0.000	0.153	0.004	0.000	0.000	0.000
Fruits	-0.009	-0.001	-0.004	0.001	-0.002	-0.005	0.020	0.001
	0.000	0.388	0.000	0.696	0.001	0.000	0.000	0.423
Other food items	0.022	-0.006	-0.005	0.000	-0.007	-0.005	0.001	0.000
	0.000	0.000	0.009	0.978	0.000	0.000	0.423	0.824
Deflated food expenditure	0.185	0.100	0.007	-0.134	0.010	0.035	0.040	-0.243
	0.033	0.005	0.878	0.037	0.572	0.494	0.131	0.002
(Deflated food expenditure)2	-0.008 0.318	-0.009 0.010	-0.004 0.341	0.004 0.558	-0.001 0.469	-0.002 0.685	-0.003 0.201	0.024 0.001
Observations	2354.000	2354.000	2354.000	2354.000	2354.000	2354.000	2354.000	2354.000

2- Estimated parameters for the modest strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-1.127	0.062	-0.050	3.683	-0.229	0.311	0.040	-1.690
	0.008	0.779	0.827	0.000	0.033	0.260	0.794	0.000
Cereals	0.038	0.006	-0.040	0.029	-0.009	-0.008	-0.009	-0.009
	0.000	0.009	0.000	0.000	0.000	0.063	0.000	0.000
Milk and dairy products	0.006	0.011	-0.005	-0.003	-0.001	-0.003	0.002	-0.009
	0.009	0.000	0.002	0.200	0.095	0.139	0.017	0.000
Fat	-0.040	-0.005	0.074	-0.003	-0.005	-0.013	-0.003	-0.005
	0.000	0.002	0.000	0.417	0.000	0.000	0.032	0.013
Meat	0.029	-0.003	-0.003	0.002	-0.001	-0.011	-0.004	-0.009
	0.000	0.200	0.417	0.790	0.548	0.004	0.023	0.001
Fish	-0.009	-0.001	-0.005	-0.001	0.022	0.003	0.000	-0.009
	0.000	0.095	0.000	0.548	0.000	0.049	0.979	0.000
Vegetables	-0.008	-0.003	-0.013	-0.011	0.003	0.039	-0.004	-0.004
	0.063	0.139	0.000	0.004	0.049	0.000	0.003	0.002
Fruits	-0.009	0.002	-0.003	-0.004	0.000	-0.004	0.015	0.003
	0.000	0.017	0.032	0.023	0.979	0.003	0.000	0.013
Other food items	0.033	-0.009	-0.005	-0.009	-0.009	-0.004	0.003	0.000
	0.000	0.000	0.013	0.001	0.000	0.002	0.013	0.718
Deflated food expenditure	0.304	0.011	0.042	-1.030	0.092	-0.066	-0.004	0.651
	0.038	0.884	0.600	0.000	0.014	0.489	0.941	0.000
(Deflated food expenditure)2	-0.014	-0.002	-0.006	0.073	-0.008	0.008	0.001	-0.053
	0.288	0.804	0.418	0.000	0.009	0.334	0.851	0.000
Observations	1613.000	1613.000	1613.000	1613.000	1613.000	1613.000	1613.000	1613.000

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

3- Estimated parameters for the lower middle strata

		Milk						
Product group	Cereals	and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-1.471	-0.188	0.187	3.478	-0.111	-0.753	-0.436	0.294
Constant	0.000	0.354	0.340	0.000	0.230	0.001	0.004	0.476
Cereals	0.027	0.010	-0.039	0.039	-0.008	-0.013	-0.009	-0.007
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Milk and dairy	0.010	0.013	-0.004	-0.005	-0.001	-0.005	0.000	-0.007
products	0.000	0.000	0.001	0.004	0.031	0.001	0.899	0.000
Fat	-0.039	-0.004	0.071	-0.010	-0.004	-0.010	-0.003	-0.002
	0.000	0.001	0.000	0.000	0.001	0.000	0.018	0.240
Meat	0.039	-0.005	-0.010	0.004	-0.007	-0.010	-0.002	-0.008
	0.000	0.004	0.000	0.437	0.000	0.001	0.223	0.001
Fish	-0.008	-0.001	-0.004	-0.007	0.024	0.005	-0.001	-0.007
	0.000	0.031	0.001	0.000	0.000	0.000	0.072	0.000
Vegetables	-0.013	-0.005	-0.010	-0.010	0.005	0.042	-0.005	-0.005
	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000
Fruits	-0.009	0.000	-0.003	-0.002	-0.001	-0.005	0.015	0.006
	0.000	0.899	0.018	0.223	0.072	0.000	0.000	0.000
Other food	0.023	-0.007	-0.002	-0.008	-0.007	-0.005	0.006	0.000
items	0.000	0.000	0.240	0.001	0.000	0.000	0.000	0.791
Deflated food	0.438	0.095	-0.036	-0.941	0.057	0.302	0.160	-0.075
expenditure	0.000	0.164	0.586	0.000	0.067	0.000	0.002	0.592
(Deflated food	-0.028	-0.008	0.001	0.065	-0.006	-0.024	-0.013	0.012
expenditure)2	0.007	0.147	0.803	0.000	0.035	0.000	0.002	0.292
Observations	2232	2232	2232	2232	2232	2232	2232	2232

4- Estimated parameters for the upper middle strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-1.037	-0.642	0.347	2.894	0.175	-0.181	-0.749	0.191
	0.000	0.000	0.005	0.000	0.010	0.177	0.000	0.480
Cereals	0.015	0.008	-0.024	0.032	-0.007	-0.009	-0.009	-0.005
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Milk and dairy products	0.008	0.016	-0.007	-0.004	-0.001	-0.006	-0.001	-0.005
	0.000	0.000	0.000	0.002	0.032	0.000	0.220	0.000
Fat	-0.024	-0.007	0.058	-0.007	-0.005	-0.014	-0.003	0.003
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
Meat	0.032	-0.004	-0.007	0.001	-0.006	-0.007	-0.005	-0.003
	0.000	0.002	0.000	0.704	0.000	0.000	0.000	0.067
Fish	-0.007	-0.001	-0.005	-0.006	0.025	0.001	0.000	-0.007
	0.000	0.032	0.000	0.000	0.000	0.240	0.998	0.000
Vegetables	-0.009	-0.006	-0.014	-0.007	0.001	0.043	-0.004	-0.005
	0.000	0.000	0.000	0.000	0.240	0.000	0.000	0.000
Fruits	-0.009	-0.001	-0.003	-0.005	0.000	-0.004	0.017	0.006
	0.000	0.220	0.000	0.000	0.998	0.000	0.000	0.000
Other food items	0.010	-0.005	0.003	-0.003	-0.007	-0.005	0.006	0.000
	0.000	0.000	0.004	0.067	0.000	0.000	0.000	0.459
Deflated food expenditure	0.312	0.224	-0.094	-0.726	-0.039	0.110	0.249	-0.036
	0.000	0.000	0.018	0.000	0.072	0.010	0.000	0.677
(Deflated food expenditure)2	-0.020	-0.017	0.007	0.048	0.002	-0.008	-0.019	0.007
	0.000	0.000	0.030	0.000	0.152	0.013	0.000	0.302
Observations	5960	5960	5960	5960	5960	5960	5960	5960

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

5- Estimated parameters for the wealthy strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.061	-0.882	0.086	3.110	0.129	-0.178	-1.130	-0.074
	-0.027	0.974	1.974	2.974	3.974	4.974	5.974	6.974
Cereals	0.018	0.005	-0.016	0.011	-0.006	-0.007	-0.007	0.002
	0.000	0.029	0.000	0.002	0.000	0.006	0.001	0.238
Milk and dairy products	0.005	0.028	-0.011	-0.016	0.002	-0.006	-0.004	0.002
	0.029	0.000	0.000	0.000	0.039	0.000	0.004	0.238
Fat	-0.016	-0.011	0.051	-0.009	-0.008	-0.006	-0.005	0.006
	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.001
Meat	0.011	-0.016	-0.009	0.042	-0.004	-0.006	-0.011	-0.007
	0.002	0.000	0.000	0.000	0.027	0.060	0.000	0.015
Fish	-0.006	0.002	-0.008	-0.004	0.028	-0.008	-0.002	-0.003
	0.000	0.039	0.000	0.027	0.000	0.000	0.111	0.027
Vegetables	-0.007	-0.006	-0.006	-0.006	-0.008	0.033	0.000	-0.006
	0.006	0.000	0.002	0.060	0.000	0.000	0.769	0.000
Fruits	-0.007	-0.004	-0.005	-0.011	-0.002	0.000	0.023	0.007
	0.001	0.004	0.001	0.000	0.111	0.769	0.000	0.000
Other food items	0.001	0.002	0.006	-0.007	-0.003	-0.006	0.007	0.004
	0.601	0.238	0.001	0.015	0.027	0.000	0.000	0.000
Deflated food expenditure	0.023	0.296	-0.019	-0.758	-0.025	0.086	0.352	0.046
	0.826	0.000	0.752	0.000	0.580	0.199	0.000	0.794
(Deflated food expenditure)2	0.001	-0.021	0.002	0.047	0.001	-0.005	-0.025	0.000
	0.844	0.000	0.688	0.000	0.657	0.272	0.000	0.975
Observations	2079	2079	2079	2079	2079	2079	2079	2079

Appendix (3): Estimated parameters from the QUAIDS model (ENCDM 2013/2014)

1- Estimated parameters for the poor/vulnerable strata

		Milk and						Other
Product group	Cereals	dairy	Fat	Meat	Fish	Vegetables	Fruits	food
		products						items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	0.192	-0.079	-0.020	0.946	-0.021	-0.270	0.082	0.170
Constant	-0.400	-0.559	-0.911	0.000	-0.825	-0.112	-0.466	-0.433
Cereals	0.020	0.005	-0.036	0.031	0.000	-0.005	-0.006	-0.008
	0.000	-0.019	(0)	(0)	-0.943	-0.143	-0.002	0.000
Milk and dairy	0.005	0.007	-0.010	0.003	-0.001	0.000	0.003	-0.008
products	-0.019	0.000	0.000	-0.170	-0.501	-0.792	-0.005	0.000
Fat	-0.036	-0.010	0.082	-0.003	-0.013	-0.008	-0.004	-0.008
	(0)	0.000	(0)	-0.361	0.000	-0.011	-0.053	-0.005
Meat	0.031	0.003	-0.003	-0.026	-0.003	-0.010	-0.005	0.013
	(0)	-0.170	-0.361	0.000	-0.184	-0.003	-0.031	0.000
Fish	0.000	-0.001	-0.013	-0.003	0.022	0.005	-0.002	-0.008
	-0.943	-0.501	0.000	-0.184	(0)	-0.014	-0.058	0.000
Vegetables	-0.005	0.000	-0.008	-0.010	0.005	0.035	-0.009	-0.009
	-0.143	-0.792	-0.011	-0.003	-0.014	(0)	0.000	0.000
Fruits	-0.006	0.003	-0.004	-0.005	-0.002	-0.009	0.018	0.005
	-0.002	-0.005	-0.053	-0.031	-0.058	0.000	(0)	-0.007
Other food items	0.016	-0.008	-0.008	0.013	-0.008	-0.009	0.005	0.000
	0.000	0.000	-0.005	0.000	0.000	0.000	-0.007	-0.822
Deflated food	-0.065	0.051	0.043	-0.154	0.019	0.124	-0.039	0.021
expenditure	-0.447	-0.316	-0.515	-0.083	-0.600	-0.050	-0.355	-0.798
(Deflated food	0.010	-0.004	-0.007	0.005	-0.001	-0.007	0.006	-0.003
expenditure)2	-0.202	-0.422	-0.282	-0.510	-0.706	-0.211	-0.111	-0.715
Observations	0.010	-0.004	-0.007	0.005	-0.001	-0.007	0.006	-0.003

2- Estimated parameters for the modest strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.996 -0.021	-0.259 -0.357	-0.212 -0.537	3.814 (0)	0.221 -0.261	-1.329 0.000	-0.434 -0.101	0.195 -0.665
Cereals	0.017 -0.003	0.007 -0.003	-0.033 (0)	0.020 0.000	-0.002 -0.340	0.005 -0.197	-0.003 -0.276	-0.010 0.000
Milk and dairy products	0.007 -0.003	0.015 (0)	-0.013 (0)	0.004 -0.125	-0.003 -0.027	0.001 -0.658	0.000 -0.963	-0.010 0.000
Fat	-0.033 (0)	-0.013 (0)	0.076 (0)	-0.001 -0.734	-0.011 0.000	-0.008 -0.016	-0.002 -0.311	-0.007 -0.009
Meat	0.020 0.000	0.004 -0.125	-0.001 -0.734	-0.007 -0.240	-0.005 -0.074	-0.016 0.000	-0.003 -0.188	0.010 -0.003
Fish	-0.002 -0.340	-0.003 -0.027	-0.011 0.000	-0.005 -0.074	0.021 (0)	0.009 0.000	-0.002 -0.249	-0.007 0.000
Vegetables	0.005 -0.197	0.001 -0.658	-0.008 -0.016	-0.016 0.000	0.009 0.000	0.025 0.000	-0.008 0.000	-0.008 0.000
Fruits	-0.003 -0.276	0.000 -0.963	-0.002 -0.311	-0.003 -0.188	-0.002 -0.249	-0.008 0.000	0.014 0.000	0.004 -0.037
Other food items	0.018 0.000	-0.010 0.000	-0.007 -0.009	0.010	-0.007 0.000	-0.008 0.000	0.004 -0.037	0.000 -0.621
Deflated food expenditure	0.331 -0.026	0.113 -0.247	0.102 -0.391	-1.110 (0)	-0.051 -0.453	0.481 0.000	0.135 -0.140	-0.001 -0.997
(Deflated food expenditure)2	-0.023 -0.073	-0.009 -0.309	-0.011 -0.287	0.085 0.000	0.004 -0.543	-0.038 0.000	-0.009 -0.277	0.000 -0.978
Observations	1.648	1.648	1.648	1.648	1.648	1.648	1.648	1.648

3- Estimated parameters for the lower middle strata

		Milk and						Other
Product group	Cereals	dairy	Fat	Meat	Fish	Vegetables	Fruits	food
8 1		products				6		items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.188	-0.172	0.238	2.517	-0.044	-1.579	-0.110	0.338
Constant	-0.515	-0.429	-0.303	(0)	-0.768	(0)	-0.572	-0.318
Cereals	0.015	0.008	-0.024	0.006	-0.002	0.001	0.000	-0.004
Cereais	0.000	0.000	(0)	-0.083	-0.384	-0.795	-0.948	-0.008
Milk and dairy	0.008	0.014	-0.011	0.001	-0.004	-0.003	-0.002	-0.004
products	0.000	(0)	(0)	-0.704	0.000	-0.021	-0.156	-0.008
Fat	-0.024	-0.011	0.077	-0.005	-0.016	-0.009	-0.009	-0.003
rat	(0)	(0)	(0)	-0.094	(0)	0.000	0.000	-0.112
Meat	0.006	0.001	-0.005	0.014	-0.007	-0.009	-0.004	0.006
Wieat	-0.083	-0.704	-0.094	-0.006	0.000	-0.001	-0.068	-0.028
Fish	-0.002	-0.004	-0.016	-0.007	0.030	0.007	-0.003	-0.006
T 1511	-0.384	0.000	(0)	0.000	(0)	0.000	-0.005	0.000
Vegetables	0.001	-0.003	-0.009	-0.009	0.007	0.025	-0.006	-0.006
vegetables	-0.795	-0.021	0.000	-0.001	0.000	(0)	0.000	0.000
Fruits	0.000	-0.002	-0.009	-0.004	-0.003	-0.006	0.015	0.007
Fruits	-0.948	-0.156	0.000	-0.068	-0.005	0.000	(0)	0.000
Other food items	0.005	-0.004	-0.003	0.006	-0.006	-0.006	0.007	0.000
Other root items	-0.038	-0.008	-0.112	-0.028	0.000	0.000	0.000	-0.962
Deflated food	0.070	0.084	-0.048	-0.646	0.040	0.542	0.030	-0.072
expenditure	-0.466	-0.243	-0.528	0.000	-0.411	(0)	-0.639	-0.522
(Deflated food	-0.001	-0.006	0.002	0.044	-0.004	-0.042	0.000	0.008
expenditure)2	-0.890	-0.299	-0.751	0.000	-0.315	(0)	-0.993	-0.415
Observations	2.693	2.693	2.693	2.693	2.693	2.693	2.693	2.693

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

4- Estimated parameters for the upper middle strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.164 -0.266	-0.330 -0.003	0.161 -0.181	2.247 (0)	-0.039 -0.641	-0.990 (0)	-0.763 (0)	0.878 0.000
Cereals	0.018 (0)	0.010 (0)	-0.017 (0)	-0.004 -0.065	-0.004 -0.002	0.003 -0.054	-0.003 -0.020	-0.005 0.000
Milk and dairy products	0.010 (0)	0.020 (0)	-0.014 (0)	-0.003 -0.023	-0.003 0.000	-0.004 0.000	-0.002 -0.040	-0.005 0.000
Fat	-0.017 (0)	-0.014 (0)	0.061 (0)	-0.013 (0)	-0.009 (0)	-0.002 -0.103	-0.005 0.000	-0.001 -0.619
Meat	-0.004 -0.065	-0.003 -0.023	-0.013 (0)	0.029 (0)	-0.004 -0.006	-0.010 0.000	-0.003 -0.031	0.006 0.000
Fish	-0.004 -0.002	-0.003 0.000	-0.009 (0)	-0.004 -0.006	0.030 (0)	0.001 -0.556	-0.004 0.000	-0.008 (0)
Vegetables	0.003 -0.054	-0.004 0.000	-0.002 -0.103	-0.010 0.000	0.001 -0.556	0.023 (0)	-0.005 (0)	-0.005 0.000
Fruits	-0.003 -0.020	-0.002 -0.040	-0.005 0.000	-0.003 -0.031	-0.004 0.000	-0.005 (0)	0.015 (0)	0.007 0.000
Other food items	0.006 0.000	-0.005 0.000	-0.001 -0.619	0.006 0.000	-0.008 (0)	-0.005 0.000	0.007 0.000	0.000 -0.733
Deflated food expenditure	0.073 -0.111	0.141 0.000	-0.021 -0.575	-0.554 (0)	0.035 -0.183	0.330 (0)	0.229 (0)	-0.232 0.000
(Deflated food expenditure)2	-0.003 -0.432	-0.011 0.000	0.000 -0.871	0.036 (0)	-0.004 -0.074	-0.024 (0)	-0.015 0.000	0.019 0.000
Observations	7.034	7.034	7.034	7.034	7.034	7.034	7.034	7.034

5- Estimated parameters for the wealthy strata

Product group	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Ln (Product prices)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	-0.522 -0.027	-0.800 0.000	0.361 -0.079	2.485 (0)	0.286 -0.111	-0.915 0.000	-0.882 0.000	0.987 -0.044
Cereals	0.035 (0)	0.000 -0.842	-0.013 0.000	-0.010 -0.001	-0.010 0.000	-0.004 -0.054	0.000	0.002 -0.205
Milk and dairy products	0.000 -0.842	0.022 (0)	-0.009 0.000	-0.013 0.000	0.000 -0.963	-0.003 -0.047	0.000 -0.990	0.002 -0.205
Fat	-0.013 0.000	-0.009 0.000	0.055 (0)	-0.019 0.000	-0.012 (0)	0.007 0.000	-0.009 0.000	-0.001 -0.590
Meat	-0.010 -0.001	-0.013 0.000	-0.019 0.000	0.065 (0)	-0.008 0.000	-0.007 -0.010	-0.013 0.000	0.004 -0.178
Fish	-0.010 0.000	0.000 -0.963	-0.012 (0)	-0.008 0.000	0.043 (0)	-0.005 -0.001	-0.001 -0.311	-0.006 -0.001
Vegetables	-0.004 -0.054	-0.003 -0.047	0.007 0.000	-0.007 -0.010	-0.005 -0.001	0.012 0.000	-0.001 -0.541	-0.001 -0.487
Fruits	0.000 -0.903	0.000 -0.990	-0.009 0.000	-0.013 0.000	-0.001 -0.311	-0.001 -0.541	0.019 (0)	0.005 -0.014
Other food items	-0.003 -0.173	0.002 -0.205	-0.001 -0.590	0.004 -0.178	-0.006 -0.001	-0.001 -0.487	0.005 -0.014	0.000
Deflated food expenditure	0.188 -0.006	0.272 0.000	-0.073 -0.222	-0.611 0.000	-0.062 -0.234	0.275 0.000	0.274 0.000	-0.263 -0.065
(Deflated food expenditure)2	-0.012 -0.013	-0.020 0.000	0.004	0.039 0.000	0.004 -0.328	-0.018 0.000	-0.019 0.000	0.022 -0.037
Observations	2.399	2.399	2.399	2.399	2.399	2.399	2.399	2.399

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

Appendix (4): Price Elasticities by Household Strata (2000/2001)

Poor/vulnerable

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.928	-0.015	-0.407	0.282	-0.506	-0.082	-0.323	-0.111
Milk and dairy products	-0.463	-0.631	0.127	0.310	-0.119	-0.030	-0.022	-0.618
Fat	-0.338	0.021	-0.119	0.076	-0.212	-0.130	-0.158	-0.265
Meat	0.023	-0.090	-0.069	-1.022	-0.206	-0.038	0.025	-0.147
Fish	-1.215	0.021	0.283	0.842	0.396	-0.035	-0.076	-1.557
Vegetables	-0.168	-0.015	-0.145	0.063	0.255	-0.726	-0.188	-0.185
Fruits	-0.715	0.022	0.138	0.500	-0.147	-0.071	-0.268	-0.876
Other food items	0.003	-0.145	-0.034	0.056	-0.442	-0.040	0.038	-1.100

Modest

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.945	0.128	-0.417	0.097	-0.476	-0.087	-0.282	0.102
Milk and dairy products	-0.459	-0.767	0.031	-0.327	-0.060	-0.183	0.068	0.655
Fat	-0.424	-0.084	-0.157	-0.185	-0.301	-0.177	-0.104	0.356
Meat	-0.018	-0.049	-0.006	-1.078	-0.057	-0.117	-0.144	0.151
Fish	-1.409	0.014	0.170	-0.893	0.258	-0.448	-0.017	1.930
Vegetables	-0.197	-0.047	-0.111	-0.164	0.188	-0.793	-0.136	0.217
Fruits	-0.812	0.068	0.095	-0.526	0.020	-0.294	-0.532	1.127
Other food items	0.022	-0.166	-0.037	-0.121	-0.480	-0.067	0.106	-0.845

Lower average

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.886	0.182	-0.425	0.129	-0.401	-0.041	-0.246	-0.146
Milk and dairy products	0.030	-0.734	-0.024	-0.324	-0.060	0.167	0.030	-0.516
Fat	-0.173	-0.052	-0.192	-0.235	-0.187	0.055	-0.059	-0.311
Meat	0.163	-0.086	-0.102	-1.065	-0.361	-0.013	-0.048	-0.177
Fish	-0.066	0.077	0.019	-0.860	0.240	0.590	0.056	-1.382
Vegetables	-0.059	-0.070	-0.102	-0.168	0.257	-0.628	-0.113	-0.212
Fruits	-0.058	0.053	0.001	-0.456	-0.047	0.267	-0.549	-0.705
Other food items	0.097	-0.110	-0.016	-0.116	-0.363	0.016	0.162	-1.120

Upper average

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.932	0.111	-0.142	0.121	-0.094	0.001	-0.056	-0.038
Milk and dairy products	-0.008	-0.782	-0.114	0.241	-0.068	-0.080	-0.051	-0.048
Fat	-0.156	-0.165	-0.424	0.155	-0.238	-0.054	-0.103	-0.022
Meat	-0.049	-0.034	-0.112	-0.776	-0.092	-0.096	-0.053	0.026
Fish	-0.190	-0.044	-0.039	0.598	-0.184	-0.099	-0.121	-0.101
Vegetables	-0.034	-0.053	-0.007	0.148	0.020	-0.843	-0.097	-0.046
Fruits	-0.111	-0.025	-0.024	0.332	-0.092	-0.100	-0.817	0.006
Other food items	-0.001	-0.053	0.004	0.156	-0.216	-0.065	0.085	-1.011

Wealthy

**Cartify								
Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.936	0.108	-0.222	-0.125	-0.176	-0.054	-0.040	-0.045
Milk and dairy products	-0.049	-0.619	-0.165	-0.343	0.066	-0.039	0.028	-0.077
Fat	-0.208	0.008	-0.332	-0.404	-0.245	-0.036	0.043	-0.088
Meat	0.039	-0.119	-0.131	-0.934	-0.124	-0.045	-0.118	-0.070
Fish	-0.268	0.297	-0.141	-0.817	-0.165	-0.025	0.223	-0.264
Vegetables	-0.115	0.023	-0.092	-0.268	-0.224	-0.687	0.069	-0.106
Fruits	-0.150	0.083	-0.083	-0.417	-0.055	0.016	-0.578	-0.083
Other food items	-0.026	0.064	0.073	-0.155	-0.084	-0.051	0.137	-1.019

Mounia Bettah, Abdeljaouad Ezzrari, Mohamed Mourji

Appendix (5): Price elasticities by household strata (2013/2014)

Poor/vulnerable

		Milk and						Other
Product	Cereals	dairy	Fat	Meat	Fish	Vegetables	Fruits	food
		products						items
Cereals	-0.946	0.075	-0.265	0.247	0.005	-0.065	-0.156	-0.039
Milk and dairy products	-0.119	-0.891	-0.016	0.345	-0.028	-0.098	0.054	-0.022
Fat	-0.255	-0.160	-0.334	0.146	-0.448	-0.103	-0.099	-0.031
Meat	0.117	0.045	-0.010	-1.022	-0.109	-0.100	-0.118	0.082
Fish	-0.318	-0.032	0.035	0.723	-0.221	-0.192	-0.100	0.011
Vegetables	-0.086	0.003	-0.035	0.095	0.174	-0.806	-0.211	-0.038
Fruits	-0.246	0.036	0.060	0.472	-0.088	-0.209	-0.599	0.065
Other food items	0.028	-0.138	-0.039	0.178	-0.300	-0.095	0.100	-0.990

Modest

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.974	0.086	-0.264	0.235	-0.073	0.000	-0.062	-0.061
Milk and dairy products	-0.123	-0.818	-0.075	0.394	-0.083	-0.077	-0.026	-0.066
Fat	-0.275	-0.189	-0.329	0.232	-0.354	-0.108	-0.059	-0.048
Meat	0.052	0.045	0.001	-0.909	-0.145	-0.143	-0.074	0.057
Fish	-0.391	-0.069	-0.001	0.882	-0.322	-0.133	-0.091	-0.064
Vegetables	-0.059	0.004	-0.047	0.126	0.292	-0.864	-0.161	-0.052
Fruits	-0.242	-0.020	0.037	0.527	-0.048	-0.173	-0.770	0.012
Other food items	0.027	-0.136	-0.044	0.210	-0.236	-0.093	0.068	-1.002

Lower average

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.973	0.099	-0.190	0.183	-0.047	-0.028	-0.007	-0.042
Milk and dairy products	-0.079	-0.832	-0.057	0.356	-0.109	-0.099	-0.050	-0.064
Fat	-0.221	-0.140	-0.322	0.221	-0.460	-0.118	-0.168	-0.047
Meat	-0.014	0.006	-0.031	-0.815	-0.212	-0.096	-0.074	0.019
Fish	-0.308	-0.070	-0.051	0.807	-0.105	-0.121	-0.108	-0.130
Vegetables	-0.071	-0.048	-0.057	0.169	0.219	-0.859	-0.111	-0.057
Fruits	-0.182	-0.035	-0.022	0.497	-0.091	-0.148	-0.756	-0.016
Other food items	-0.029	-0.054	-0.011	0.192	-0.168	-0.076	0.123	-1.019

Upper average

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.932	0.111	-0.142	0.121	-0.094	0.001	-0.056	-0.038
Milk and dairy products	-0.008	-0.782	-0.114	0.241	-0.068	-0.080	-0.051	-0.048
Fat	-0.156	-0.165	-0.424	0.155	-0.238	-0.054	-0.103	-0.022
Meat	-0.049	-0.034	-0.112	-0.776	-0.092	-0.096	-0.053	0.026
Fish	-0.190	-0.044	-0.039	0.598	-0.184	-0.099	-0.121	-0.101
Vegetables	-0.034	-0.053	-0.007	0.148	0.020	-0.843	-0.097	-0.046
Fruits	-0.111	-0.025	-0.024	0.332	-0.092	-0.100	-0.817	0.006
Other food items	-0.001	-0.053	0.004	0.156	-0.216	-0.065	0.085	-1.011

Wealthy

Product	Cereals	Milk and dairy products	Fat	Meat	Fish	Vegetables	Fruits	Other food items
Cereals	-0.763	-0.011	-0.132	0.111	-0.193	-0.063	-0.011	-0.034
Milk and dairy products	-0.034	-0.790	-0.081	0.148	0.005	-0.057	-0.019	-0.047
Fat	-0.131	-0.094	-0.378	0.147	-0.239	0.052	-0.131	-0.069
Meat	-0.089	-0.128	-0.199	-0.641	-0.161	-0.083	-0.158	-0.006
Fish	-0.137	-0.020	-0.111	0.371	-0.142	-0.104	-0.055	-0.143
Vegetables	-0.064	-0.038	0.096	0.194	-0.088	-0.894	-0.030	-0.068
Fruits	-0.036	-0.012	-0.087	0.189	-0.022	-0.040	-0.793	-0.046
Other food items	-0.038	0.016	-0.006	0.114	-0.110	-0.023	0.048	-1.026

Journal of Development and Economic Policies, Vol. 24, No. 2 (2022) 43 - 68 Arab Planning Institute

Role of Policies in Stimulating Renewable Energy in Arab Countries Sahar Aboud*

Abstract

Despite the abundance of literature on renewable energy (RE), studies about the role of policies in stimulating RE, especially for Arab countries, are still limited. This study aims at examining the role of RE policies as a key determinant of RE investment in 11 Arab countries using panel data covering the period 2010-2019 to identify areas for policy intervention to stimulate RE investment in Arab countries. The study uses RE share in total energy supply as a proxy for RE investments. The analysis finds there is heterogeneity among Arab countries concerning their efforts toward reaching an enabling environment for RE investment, but all of them are exhibiting an improvement. Results confirm the importance of policies, either using the RE policy index or its sub-indices in stimulating RE investment in Arab countries, as their variables are statistically significant. But despite the significance of policies, Arab countries have low coefficients that reflect weakness in some sub-indices, particularly carbon pricing and greenhouse gas monitoring, incentives and regulatory support, attributes of financial and regulatory incentives, and counterparty risk. To boost RE investment, Arab countries need to work vigorously on these pillars.

دور السياسات في تحفيز الطاقة المتجددة في البلدان العربية

سحر عبود

ملخص

بالرغم من وفرة الأدبيات الاقتصادية عن الطاقة المتجددة، فإن الدراسات مازالت محدودة حول دور السياسات في تحفيز الاستثمار في الطاقة المتجددة خاصة للبلدان النامية ومنها البلدان العربية. تتناول هذه الدراسة بالتحليل دور السياسات كأحد المحددات الأساسية للاستثمار في الطاقة المتجددة في 11 بلدًا عربيًا باستخدام السلاسل الزمنية المقطعية للفترة 2010-2019 لتحديد المجالات التي من شأن تدخل السياسات فيها أن يشجع الاستثمار في الطاقة المتجددة في البلدان العربية. وتستخدم الدراسة نصيب الطاقة المتجددة من إجمالي عرض الطاقة كمؤشر بديل للاستثمار في الطاقة المتجددة. ورغم ما يظهره التحليل من تباين جهود البلدان العربية فيما يتعلق بتهيئة البيئة الداعمة لاستثمار الطاقة المتجددة، إلا أن كافة البلدان العربية تشهد تحسنًا في هذا الصدد. وتؤكد النتائج أهمية السياسات في تحفيز الاستثمار في الطاقة المتجددة في البلدان العربية سواء على مستوى المؤشر الإجمالي للسياسات أو مكوناته الفرعية وجاءت متغيراتها معنوية إحصائيًا. وبالرغم من معنوية المتغيرات، فإن تواضع معاملاتها يعكس الضعف في بعض المؤشرات الفرعية وتحديدا تسعير الكربون ومتابعة الغازات الدفيئة، والحوافز والدعم التنظيمي، والحوافز المالية والتنظيمية، والمخاطر المرتبطة باحتمالية عدم الالتزام. وعليه، من أجل دفع عجلة الاستثمار في الطاقة المتجددة، يلزم على البلدان العربية العمل بقوة على هذه المجالات.

^{*} Lecturer of Economics, Institute of National Planning, Egypt. E-mail: sahar.aboud@inp.edu.eg

1. Introduction

Renewable energy (RE) can be a powerful engine for economic recovery from the ongoing coronavirus crisis through creating new opportunities for sustainable economic growth and employment. In addition, RE can be a cornerstone in achieving the 2030 Agenda for Sustainable Development and meeting the commitments made under the 2015 Paris Agreement, which seeks to "hold the increase in the global average temperature to well below 2°C above pre-industrial levels". (UNFCCC 2015; Article 2)

There is an upward trend in global investment in RE. A total of \$2.7 trillion have been invested in RE during 2010-2019 (excluding large hydro), which is more than triple the amount invested over the past decade (UNEP 2019).

Despite this increase, it is still significantly lower than the investment needed to meet the commitment under the Paris Agreement. The International Energy Agency (IEA) estimates that more than \$6 trillion in cumulative investments in renewable power until 2040 are required to meet this goal (IEA 2016).

There is consensus concerning the role of policies in stimulating RE investment. This role can be achieved by designing stronger and more coherent climate mitigation policies, which stimulate both the demand and supply of RE using different tools. These policies include carbon pricing, fiscal and financial incentives, the phasing-out of fossil fuel subsidies and R&D support OECD (2016).

There is a notable increase in supportive governmental intervention all over the world, with around 80 percent of high-and upper-middle-income countries adopting supportive RE policies (Polzin et al. 2019)

In 2018, around 111 countries have applied the feed-in tariff, at least 48 countries applied RE auctions, and about 66 countries implemented net consumption policies (REN21 2019).

Most studies have demonstrated the importance of policies in supporting investment in RE over the past decade, and this pivotal policy role is expected to continue.

The policy mix used by each country is subject to a variety of variables, including the nature of the market, the development of RE technologies, and policy priorities.

During the past decade, many Arab countries have made significant progress toward a sustainable energy future, through developing enabling policy frameworks for RE with ambitious targets and financial incentives.

These efforts resulted in a huge increase in accumulative investments in RE (excluding hydro) in the Arab region to be around \$15 billion during the past decade compared to only \$1.2 billion in 2008 (RECREEE and UNDP 2019).

However, with this shift, the share of Arab countries in global investment in RE is still limited and far from the value needed to achieve their targets, so the need to mobilize investments in RE is essential.

Despite the abundance of literature on RE, studies about the role of policies in RE investments, especially for developing countries including Arab countries, are still limited.

Therefore, the study aims at examining the role of RE policies as a key determinant of RE investment in 13 Arab countries using panel data covering the period 2009-2019 to identify areas for policy intervention to stimulate RE investment in Arab countries.⁽¹⁾ The countries are Jordan, United Arab Emirates, Egypt, Morocco, Tunisia, Algeria, Sudan, Iraq, Oman, Kuwait, Lebanon, Libya, and Saudi Arabia.

This research paper is organized as follows: Section I reviews the existing literature on the role of policies in stimulating RE investment. Section II briefly presents some stylized facts about RE investments in Arab countries. Section III describes the methodology and data used and discusses the results. The final section concludes with some policy implications.

⁽¹⁾ Due to the unavailability of data, the final sample is composed of 11 Arab countries: Algeria, Egypt, Jordan, Lebanon, Morocco, Saudi Arabia, Tunisia, Kuwait, the United Arab Emirates, Oman, and Sudan for the period 2010-2019.

2. Literature Review on the Role of Policies in Stimulating Investment in RE

Despite growing literature on the importance of RE, studies are still limited about determinants of RE investments, especially for developing countries including Arab countries. As reviewed below, most studies examine the effect of a specific policy or a group of policies and are usually applied in developed or emerging countries.

Wenfeng et al. (2018) used a group of aggregate and specific RE policies to evaluate their effect using a panel dataset covering 29 countries (EU, China and India) from 2000 to 2015. The study indicates that four aggregate policies—fiscal and financial incentives, market-based instruments, policy support and research & development (R&D)—and three specific policies—price policy, grants and subsidies, and strategic planning—are significant to improve RE capacity.

Dina et al. (2018) used data from 13 OECD economies for the period 2004–2016 to investigate the impact of four policy instruments, namely (i) feed-in tariffs, (ii) taxes, (iii) loans, and (iv) grants and subsidies, on private investment in RE, in addition to other explanatory variables including government R&D, fuel prices, and RE prices. Applying a multilevel random-intercept and random-coefficient model provides evidence of the effectiveness of feed-in tariffs and loans on private investment in RE, while there is no evidence of the impact of taxes, grants, and subsidies.

Geraldine et al. (2017) assessed the impact of climate mitigation policies and the quality of the investment environment on investment and innovation in RE. The authors used data across OECD and G20 countries on more than 70 explanatory variables. These variables were grouped into three categories: (i) climate mitigation policies; (ii) investment environment variables; and (iii) control variables. Results showed that beyond adopting climate mitigation policies, policymakers must strengthen the business investment environment and make it consistent with climate mitigation policies to mobilize investment and innovation in RE.

Haščič et al. (2015) investigated the role of two categories of public interventions—finance (bilateral, domestic, and multilateral) and public policy instruments (feed-in tariffs, RE quotas, the Clean Development Mechanism)—in

mobilizing flows of private climate finance worldwide using the Heckman method. The econometric analysis focused on six RE sectors (biomass, geothermal, marine, small hydro, solar, and wind) for 769 country pairs during the period 2000-2011.

Results concluded that both public finance and policies played a significant role in mobilizing private finance worldwide. For developed countries, public policies played a more important role than public finance, while for developing and emerging countries the effect of policies is limited compared to the effect of public finance.

Polzin et al. (2015) used a sample of OECD economies for the period 2000-2011to explore the impact of public policy measures on RE diffusion through investments in electricity-generating capacity implemented by institutional investors (i.e., investment/pension funds, banks, and insurance companies). To boost investments, the policy mixture must contain economic/fiscal incentives (such as FITs) as well as market-based incentives like GHG emission trading systems, which directly impact the risk/return structure of RE projects. Complementing these with regulatory measures such as codes, standards, and long strategic planning could strengthen the environment for RE investments.

Eyraud et al. (2013) examined factors affecting green investment in 35 advanced and emerging countries from 2004 to 2010. There is a positive relationship between green investments and economic growth, low interest rates, and high fuel prices. Some policy interventions, such as carbon pricing schemes, or feed-in-tariffs, have a positive and significant effect on green investment while biofuel support was not followed by higher green investments.

Burer and Wustenhagen (2009) surveyed 60 investment professionals from European and North American venture capital and private equity funds to assess the effectiveness of various policies in stimulating investment in innovative clean energy technologies.

Based on interviews, investors agreed that a mixture of policies was required to extend investor interest in clean energy, and technology-push and market-pull policies were supplementary. They confirmed the importance of policy consistency. Finally, clean energy investors consider supportive policy as crucial to encouraging investment in clean energy technologies, although a decent policy

environment is credibly important. Nevertheless, some investors were deeply worried about any government involvement. The authors of the study suggested that policymakers can intensively communicate the benefits of good policies and clarify their rationale.

Polzin et al. (2019) reviewed 96 empirical studies to measure the effectiveness of various policy instruments on two main decision metrics for investors: investment risk and investment return. This study concludes that effective policies should address both risk and return simultaneously. Also, the credibility and predictability of policies affect the investment decision. A focused analysis of the particular design of feed-in tariffs, auctions, and renewable portfolio standards confirmed that they were most effective when designed in a way that minimizes risk and maximizes return.

Besides the RE policies, other studies confirm the role of other variables in determining the value of RE investment such as the state of the national business environment and governance issues.

OECD (2015a, b) confirmed the importance of a supportive macro business environment for renewable investment decisions. The absence of discrimination against foreign investors, support for competition policy, and intellectual property protection, contract enforcement, transparency, streamlined and clear regulation and procedures, access to finance, and land are all factors that increase investor confidence to invest in RE.

Bellakhal et al. (2017) investigated the relationship between governance, trade openness, and RE investment within the MENA region using panel data for 15 MENA countries for the period 1996-2013. The study used six variables to reflect the level of governance: corruption, bureaucracy quality, government stability, internal conflicts, investment profile, and law and order. The results confirmed that governance issues largely determine investments in RE within the MENA region. In addition, this effect seems to be conditional on the trade regime. The results confirmed that bad governance and distorted trade policy both explain the low level of investment in RE across MENA countries.

In addition to the role of RE policies, non-policy variables affect renewable investments such as level of development, local energy supply, availability and cost of renewable resources, and commitments to environmental agreements.

Romano and Scandurra (2016) tried to analyze the determinants of investments in RE sources with differentiation between hydroelectric and other renewable sources. They used a dynamic panel analysis of renewable investments in a sample of 32 countries (OECD, Brazil, Russia, India, China, and South Africa), in the years 2000-2008. Results confirm that key factors promoting investments in RE vary according to generation sources. Investments in hydroelectric sources contribute to improving the environmental conditions, while the other sources are not significant. Policies are useful in supporting investments in RE. An increase in the share of nuclear and thermal electricity generation depresses investments in renewables.

Considering the above, RE policies are important to stimulating investment in RE. Their impact, however, is dependent on several factors including the general policy of climate change, support for conventional energy, the overall environment for investment, and governance considerations. Designing policies in a coherent manner takes the aspects of return and risk into account; and achieving stability, credibility, and predictability are considered a prerequisite to attracting investments in RE, especially large-scale projects.

3. Some Stylized Facts about RE Investments in Arab Countries

Arab countries have promising RE business opportunities that are estimated at over 30 percent of the global solar and wind growth. Also, shifting to renewable is required to achieve global and national sustainable development agendas and meet the growing demand for energy.

During the past decade, several Arab countries have made significant progress toward a sustainable energy future, through developing enabling policy frameworks for RE with ambitious targets. Based on the announced targets for 2035, the region will have more than 190 GW of operational capacities. The most ambitious target in terms of the share of the power mix is Djibouti, where the target would reach 100 percent renewables by 2035, followed by Morocco (52 percent) followed by the United Arab Emirates and Egypt (ESCWA 2019).

Regionally, the Arab countries announced their commitment to a sustainable energy future through the adoption of the Pan-Arab Renewable Energy Strategy 2030 in 2013. The strategy has been expanded in 2018 to become the Pan-Arab Sustainable Energy Strategy (ASES). The ASES provides wide renewable opportunities within the Arab electricity markets (IRENA 2014).

Despite the rise in total installed capacity within Arab countries of new renewables (excluding hydro), which surpassed seven GW in 2018 compared to only 1.1 GW in 2010, the RE share in the overall installed capacity did not exceed six percent on average in 2018. Notably, Arab African countries enjoy a higher overall share reaching 12 percent, indicating a relatively faster development pace. Sudan is leading with around 49 percent share attributed to its large hydro capacity. If hydro is excluded, Morocco and Jordan have the highest shares at around 14 percent, followed by Mauritania with a share of 12 percent. Seven Arab countries (Jordan, Egypt, UAE, Algeria, Morocco, Yemen, and KSA) hold 90 percent of the current PV capacities in the region, while five Arab countries (Morocco, Egypt, Jordan, Tunisia, and Mauritania) hold 99 percent of the current wind capacities within the region (RECREEE and UNDP 2019)

RE share in total energy supply for Arab countries is still limited as reflected in Table 1, especially compared to India, Brazil, and Turkiye.

Table (1): Shares of Different Energy Sources in Total Energy Supply in 2019

Country	Oil	Natural gas	Coal	Biofuels and waste	Wind, solar, etc.	Hydr o	Nuclear
Bahrain	12.6	87.4					
Tunisia	39.3	41.1		9.8	1.1	0.1	
Morocco	56.5	3.9	29.8	5.9	3.3	0.5	
Egypt	37.4	54.7	2.8	3.5	0.5	1.2	
UAE	7.4	89.1	2.9	0.1	0.6		
Jorden	54.27	37.26	2.27	1.06	5.12	0.02	
Lebanon	94.6		1.8	1.9	0.7	1	
Oman	2.43	97.56			0.001		
Qatar	7.58	92.4		0.02			
Algeria	35.67	63.7	0.49	0.016	0.09	0.02	
Saudi Arabia	62.6	37.37		0.004	0.017		
Kuwait	45.4	54.5			0.1		
Sudan	34.5			61.1		4.4	
India	25.1	5.9	44.5	20.4	1.2	1.6	1.3
China	19.2	7.4	61	3.7	2.8	3.2	2.7
Turkiye**	28.8	26.9	27.2	2.4	10.1	4.8	
Brazil	36.1	11	5.3	32.2	2.2	11.8	1.4
Mexico**	38.9	45.8	4	5	3.4	1.3	1.6

^{**} Data for 2020

Source: Author calculations based on the International Energy Agency (IEA)

database.

So, many Arab countries adopted supporting policies to scale up RE investments such as competitive bidding, auctioning, direct proposals, net-metering, and feed-in tariffs. The market structures have improved, providing private investment opportunities to ease access to the power generation market. Most Arab countries established institutions responsible for RE development, and some of them started drastic fuel subsidy reforms like Egypt and Morocco (RECREEE and UNDP 2019).

These great efforts resulted in a huge increase in the aggregate accumulative investments in RE projects in the last decade (excluding hydro) to be around \$15 billion compared to only \$1.2 billion in 2008 (RECREEE and UNDP 2019).

Despite this shift, the share of Arab countries in global investment in RE is still limited either compared to other regions, especially Asian countries, or to the value needed to achieve the ambitious renewable targets, so the need to mobilize investment in RE is essential (UNEP 2019).

A key challenge to the region is to extend the market volume for decentralized RE solutions in several sectors, such as solar pumping for irrigation and hybridization of renewables with diesel for electricity and heat generation in industry and commercial sectors (RECREEE and UNDP 2019).

Assessing the RE policy environment remains challenging, especially in developing countries including Arab countries, where information is limited and monitoring the implementation process or policy efficiency is not an easy task.

The World Bank introduced a simple composite index for sustainable energy called the Regulatory Indicators for Sustainable Energy (RISE). It consists of four pillars: access to electricity, clean cooking, RE, and energy efficiency. RISE scores reflect how countries support sustainable energy through capturing policies and regulations. The RISE score ranges from 0 (worst) to 100 (best) (World Bank 2020).

Generally, RISE may be a comprehensive index that reflects the attractiveness of a country to RE investment. RE pillars include seven sub-pillars: legal framework for RE, planning for RE expansion, incentives and regulatory support for RE, attributes of financial and regulatory incentives, network connection and use, counterparty risk, carbon pricing, and monitoring.

Using scores for Arab countries in the RE pillar available from the RISE database during the last 10 years, two main facts can be concluded:

- a. There is a notable improvement in the RE environment across Arab countries in all sub-pillars related to RE (Figure 1)
- b. Despite the improvement, there is a huge difference in performance across sub-pillars. While the legal framework supporting renewable has witnessed considerable improvement in all Arab countries, the network connection and use are still lagging, followed by carbon pricing and monitoring (Figure 1).

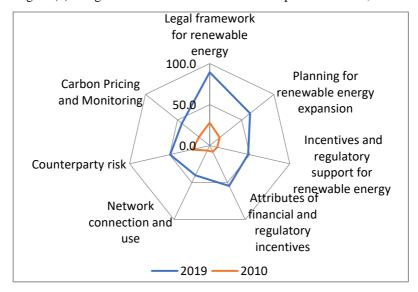


Figure (1): Progress of Arab Countries in RE Sub-pillars for 2010, 2019

Source: Calculated from World Bank, RISE 2020, Regulatory Indicators for Sustainable Energy - https://rise.esmap.org/

Benchmarking the RE environment in the Arab countries against other developing countries particularly China, India, and Brazil as shown in Table 2 reveals that the Arab countries are still far from some other developing countries.

Not only is there heterogeneity between the Arab countries and other developing countries, but there is also heterogeneity within the Arab countries regarding their performance to improve the RE environment either on the overall pillar or sub-pillars as follows:

- a. Regarding the RE pillar: Tunisia, United Arab Emirates, Egypt, Morocco, and Jordan were the top five in 2019, so they are considered to have mature policy environments. However, Yemen, Sudan (except for Hydro), and Kuwait still have a weak environment supporting RE (Table 2).
- b. Regarding the RE sub-pillars: There is a great variation among Arab countries across the different sub-pillars. Except for the legal framework and planning for renewable, the other sub-pillars show wide variation.

Table (2): Scores of Arab Countries and Some Developing Economies in RE Pillar in RISE and its Sub-pillars for 2019

	Countries	RE	RE Indicator 1: Legal framework for RE	RE Indicator 2: Planning for RE expansion	RE Indicator 3: Incentives and regulatory support for RE	RE Indicator 4: Attributes of financial and regulatory incentives	RE Indicator 5: Network connection and use	RE Indicator 6: Counterparty risk	RE Indicator 7: Carbon Pricing and monitoring
	Tunisia	79	100	60	75	75	31	64	100
	United Arab Emirates	78	80	63	75	67	50	92	100
	Egypt, Arab Rep.	77	100	63	48	92	83	76	50
	Jordan	75	100	47	45	92	50	64	100
Š	Morocco		100	80	65	83	40	81	50
ntrie	Lebanon	67	100	77	80	50	26	58	50
con	Oman	51	60	58	40	50	66	38	0
Arab countries	Qatar	47	80	38	25	17	0	60	100
1	Algeria	45	100	63	45	17	57	23	0
	Saudi Arabia	39	80	48	19	50	20	58	0
	Bahrain	33	100	46	19	25	13	13	0
	Kuwait	28	60	38	0	25	7	17	50
	Sudan	25	60	17	0	0	0	8	0
gu	India	89	100	73	93	95	87	75	100
Other developing economies	Mexico	82	80	68	65	75	83	66	100
economies	Brazil	81	80	92	82	75	100	83	50
ther	Turkiye	80	100	93	60	92	82	84	50
Ō	China	69	100	56	83	42	82	70	50

Source: World Bank, RISE 2020- Regulatory Indicators for Sustainable Energy - https://rise.esmap.org/

Note: Scores 67–100 indicate a relatively mature policy environment (highlighted in green). Scores 33–67 indicate serious efforts to develop a policy framework (highlighted in yellow). Scores 0–33 indicate policy adoption remains at an early stage (highlighted in red).

All Arab countries, whether good performers or not, have good prospects for improving their RE environment.

4. Methodology, Data and Results

Methodology

This research paper aims to examine the link between policies and RE investments in Arab countries. Theoretically, policies play an important role in stimulating RE investments. The study tries to test this hypothesis using a composite index reflecting the RE policy environment then rerun the model using the sub-indices or the component of the composite index to test for the most significant indices for RE investment.

The model will use a panel estimation strategy. As panel data contain more information, greater variability and less collinearity between the variables allow for exploiting the time-series dimension of the data and control for possible heterogeneity and omitted variables on cross-sectional estimation.

Since static regression models can suffer from many problems, including structural instability and spurious regression, a dynamic specification of the model is employed that allows for slow adjustment. The inclusion of a lag dependent variable as an explanatory variable provides dynamic adjustment in an econometric model. However, the lagged dependent variable correlates with the cross section-specific effect and the problem of endogeneity appears. This endogeneity issue affects the consistency of least squares-based estimations. The use of instrumental variable (IV) methods or the generalized method of moments (GMM) produces consistent parameter estimates for the data with finite periods and large cross-section dimensions (Romano and Scandurra 2016).

Before applying any analysis technique, we must check the normality assumptions for the dependent variables as follows: using two tests, which are one-sample Kolmogorov Test and Shapiro-Wilk test. Both tests show that the normality assumption for all the dependent variables is not achieved.

In case of violation of the normality assumption, a good candidate for the estimation process is the generalized method of moments (GMM) developed by

Arellano and Bond (1991). The GMM estimation was formalized by Hansen (1982), and since then has become one of the most widely used methods of estimation for models in economics. In models for which there are more moment conditions than model parameters, GMM estimation provides a straightforward way to test the specification of the proposed model. This is an important feature that is unique to GMM estimation.

The consistency of the estimation depends on whether lagged values of the endogenous and exogenous variables are valid instruments in our regression. Also, this methodology assumes that there is no autocorrelation in the errors, therefore a test for the previous hypotheses is needed.

Two tests are employed to check the consistency of the estimation. The Sargan test, proposed by Arellano and Bond, is used to test over-identifying restrictions for the instruments. The null hypothesis of the Sargan test assumes that the over-identifying restrictions are valid. Failure to reject the null hypothesis in this test gives support to our model. The Arellano-Bond test is employed to test if there is autocorrelation between errors. The null hypothesis is the absence of first-order autocorrelation. Failure to reject the null hypothesis means there is no autocorrelation and the model is accurate.

The model will test the following two equations:

where for country *i* at time *t*, InshareREit is the logged share of RE in total primary energy supply (TPES), and In GDDPC is the lagged value of GDP per capita. Energy imports as a percentage of energy use. DB is a score in the Doing Business database in each country. RE policy index is a measure of specific policies and

regulations adopted by the country to develop RE and attract investment in RE projects, and Eit represents the error term.

Data

Due to the unavailability of data, the final sample is composed of 11 Arab countries: Algeria, Egypt, Jordan, Lebanon, Morocco, Saudi Arabia, Tunisia, Kuwait, the United Arab Emirates, Oman, and Sudan for the period 2010-2019.

Variables definition and summary statistics are reported in Appendices 1 and 2. The dependent variable is the value of RE investment. However, data on RE investment are not available for all years and all Arab countries. In general, two proxies are often used in the literature: RE production and RE consumption. The study follows Marques et al. (2010) and Bellakhal, R. et al. (2017) and uses the contribution of RE to the total primary energy supply as a proxy for RE investment (InshareRE). This variable reflects the shift towards RE in energy supply. It is measured by the natural logarithm of the ratio between the total RE produced and the total primary energy supply. Data have been gathered from two sources: the OECD concerning the value of RE, and the Energy Information Administration (EIA) concerning the total primary energy supply.

In addition to the lag of RE as an explanatory variable, the other four explanatory variables are weakly correlated as shown from the correlation coefficients presented in Appendix 3.

In GDPPC is the natural logarithm of real GDP per capita. There is abundant literature on the relationship between income and pollution across different stages of development, based on the Environmental Kuznets Curve (EKC). In general, high-income countries are supposed to have stricter environmental policies and encourage RE production and consumption (Wolde-Rufael 2009; Copeland and Taylor 2003; Lieb 2003).

Energy imports are the percentage of energy imports in total energy use. It reflects the dependence on external sources in meeting the domestic demand for energy in each country. The expected coefficient is negative. As the country's energy imports increase, it should diversify its energy mix and increase the share of renewable sources.

Doing Business (DB) is the score of a country in the Doing Business index issued by the World Bank. The index reflects how the investment environment is friendly to the business sector generally. Doing Business measures 41 indicators gathered in 12 dimensions of business regulation affecting local firms existing in the largest business city of 190 economies. The Doing Business score ranges between 0 (worst) to 100 (best). The conducive business environment will positively affect RE investments. (OECD 2015a, b)

The RE policy variable is the score of each country in the RE pillar included in World bank RISE. The score of RE reflects the RE policy environment. The higher score reflects a good RE policy. The expected coefficient is positive. As mentioned in the literature review, implementing good policies will stimulate RE investment so the expected sign will be positive.

Results

The descriptive statistics of the data shown in Appendix 2 reveal a high standard deviation in the policy variable followed by the DB variable, which reflects the heterogeneity among Arab countries in both variables. It also confirms the low level of RE share in the total energy supply, where RE policies are mature or in the early stage. This may refer to two issues: first is the lag of some Arab countries in setting supportive policies for RE, and second is that countries with mature policies may have challenges in implementation or effectiveness.

The results of the model estimation are presented in Table 3, which contains the results of estimation for the two equations 1 and 2. Before interpreting the coefficient, we test the consistency of both models. Using both Sargan and Arellano and Bond tests, their results confirm the absence of autocorrelation and overidentification problems, as shown in Appendix 4.

The results are consistent with the literature in confirming the importance of RE policies either using the RE policy index or using its sub-indices in promoting RE investment in Arab countries, as their variables are statistically significant. The low value of the estimated coefficient for RE policy may indicate there is room for improvement either in adopting RE policies in bad performers according to RISE or in improving the design and the implementation process for suitable policies, including monitoring and evaluation to assess the effectiveness of adopted policies.

The coefficient signs for the sub-indices have mixed results. While planning for RE expansion (sub2), legal and regulatory framework for RE (sub1), and network connection and use (sub5) are affecting the RE positively, incentives and regulatory support (sub3), attributes of financial and regulatory incentives (sub4), carbon pricing and greenhouse gas monitoring (Sub7) and counterparty risk (sub6) have a negative coefficient. The negative and significant relation confirms that there is a need for Arab countries to work vigorously on these pillars to boost RE investment.

The income effect on RE investment is negative and statistically significant in both models. This result is in line with Bellakhal (2017) and Marques et al. (2010) who found a negative effect of income in promotion of RE within the MENA region. Here, the negative sign may reflect the fact that Arab countries include both oil-exporting and oil-importing countries, so the income effect is rather weak in the Arab countries compared to the more prevalent substitution effect. While the oil-importing countries have an incentive to substitute oil for a cleaner alternative at least to reduce their import bills, the oil-exporting countries are less motivated to do so. Thus, it is only normal that we find that the best performers in stimulating RE (except for UAE) are among the lower-income countries, while the higher-income mainly big oil-exporting countries are lagging. This also explains the negative and significant relation between energy imports and RE energy.

The DB score has a significant but negative coefficient. This is unexpected and may confirm that there is still a need to improve the business environment in general in most Arab countries to enhance their attractiveness to investment.

Table (3): GMM Estimation Results

VARIABLES	Eq(1)	Eq(2)
RE(-1)	0.619***	0.616***
KE(-1)	(0.000)	(0.000)
Ln GDPPC	-16.22***	-15.78***
LII GDFFC	(0.000)	(0.000)
Energy import	0.0370***	0.0367**
Energy import	(0.000)	(0.024)
DB score	-0.0697**	-0.0217
DD Score	(0.029)	(0.894)
RISE	0.0763**	
KISE	(0.000)	
Sub1		0.0210
Subi		(0.374)
Sub2		0.0991**
5002		(0.0347)
Sub3		-0.0107**
SubS		(0.000)
Sub4		-0.0217
5464		(0.429)
Sub5		0.0178**
Subs		(0.000)
Sub6		-0.0271
Subo		(0.477)
Sub7		-0.0245**
Sub7		(0.000)
Constant	149.3***	143.1***
	(0.000)	(0.000)
Observations	99	99
Number of ID	11	11

p-value in parentheses

*** p<0.01, ** p<0.05, * p<0.1

4. Conclusion and Policy Implications

RE can be a powerful engine for economic recovery from the coronavirus crisis in addition to its importance for the 2030 Agenda for Sustainable Development and the 2015 Paris Agreement. Over the past decade, many Arab countries made serious progress toward a sustainable energy future, setting ambitious targets for RE applications, especially in electricity generation. An improved capacity is observed to provide institutional support, streamline administrative procedures, and set financial and fiscal incentives.

However, the share of Arab countries in global investment in RE is still limited to achieving their targets and reaping the benefits from RE opportunities, so the need to mobilize investments in RE is essential.

Despite the abundance of literature on RE, studies are still limited about the role of policies on RE investments, especially for developing countries including Arab countries. Therefore, the study aimed at examining the role of RE policies as a key determining factor of RE investment in 11 Arab countries using panel data for the period 2010-2019.

The study concludes that there is heterogeneity among Arab countries concerning their efforts to enable the environment for RE investment, but all Arab countries—whether good or bad performers—have good prospects for improving their RE environment. Estimation results are consistent with the literature, confirming the importance of policies either using RE policy index or using its subindices in promoting RE investment in Arab countries, as their variables are statistically significant.

The coefficient signs for the sub-indices have mixed results. Planning for RE expansion, legal and regulatory framework for RE, and network connection and use, affect RE investment positively. Carbon pricing and greenhouse gas monitoring, incentives and regulatory support, attributes of financial and regulatory incentive, and counterparty risk have a negative coefficient. The negative and significant relation confirms that to boost RE investment, Arab countries need to work diligently on these pillars.

However, generally speaking, many areas can be mentioned such as strengthening climate mitigation policies, particularly carbon monitoring and

pricing, setting quantitative targets for other RE applications such as transport, heating, and cooling, and tailoring the needed policies and incentives for stimulating demand and supply for these applications, hence expanding the market volume for decentralized RE solutions in different sectors.

Finally, those policies and regulations that are critical to attracting investment in RE must be backed by awareness of the importance of sustainable energy, strong institutions, access to finance, an open flow of information, and last but not least a strong private sector.

References

Arellano M. and S. Bond. (1991), "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." Rev. Econ. Stud. 58, pp. 277–297.

Bellakhal, R, et al. (2017), "Governance and RE Investment in MENA Countries: How Does Trade Matter?" ERF Working Paper 1153. The Economic Research Forum, Egypt.

Burer. J. M and Wustenhagen. (2009), "Which RE Policy is a Venture Capitalist's Best Friend? Empirical Evidence from a Survey of International Cleantech Investors." Energy Policy 37 (2009) 4997–5006. Doi: 10.1016/j.enpol.2009.06.071.

Copeland, B.R. and M. Taylor. (2003), "Trade, Growth and the Environment." NBER Working Paper 9823, NBER, July.

Dina et al. (2018), "Implications of Fiscal and Financial Policies for Unlocking Green Finance and Green Investment." ADBI Working Paper Series, No. 861-August, Asian Development Bank Institute.

ESCWA. (2019), "RE Legislation and Policies in the Arab Region." INF 1. UN.

Eyraud, L. et al. (2013), "Green investment: Trends and Determinants." Energy Policy 60: 852-865.

Geraldine, Ang. et al. (2017), "The Empirics of Enabling Investment and Innovation in RE." OECD Environment Working Papers No. 123, OECD.

Haščič, I. et al. (2015), "Public Interventions and Private Climate Finance Flows Empirical Evidence from RE Financing." OECD Environment Working Papers, No. 80, OECD Publishing. http://dx.doi.org/10.1787/5js6b1r9lfd4-en

IEA (International Energy Agency). 2016. "World Energy Investment Outlook 2016." OECD/IEA Publishing, Paris.

IRENA (International Renewable Energy Agency). (2014), "Pan Arab RE Strategy 2030." Abu Dhabi, United Arab Emirates.

Komendantova, N., et al. (2012), "Perception of Risks in RE Projects: The Case of Concentrated Solar Power in North Africa." Energy Policy 40, 103-109.

Lieb, Christoph. (2003), "The Environmental Kuznets Curve- A Survey of the Empirical Evidence and Possible Causes." University of Heidelberg, April.

Marques, A. et al. (2010), "Motivations Driving RE in European Countries: A Panel Data Approach." Energy Policy 38, 6877-6885.

OECD (Organization for Economic Co-operation and Development). (2015a), "Policy Guidance for Investment in Clean Energy Infrastructure: Expanding Access to Clean Energy for Green Growth and Development." OECD Publishing, Paris.

OECD. (2015b), "Overcoming Barriers to International Investment in Clean Energy." OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264227064-en.

OECD.(2016), "Fragmentation in Clean Energy Investment and Financing." In OECD Business and Finance Outlook 2016, 141–175. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264257573-en.

Polzin F., et al. (2015), "Public Policy Influence on RE Investments: A Panel Data Study across OECD Countries. Energy Policy. 80 (2015) 98–514 111. doi:10.1016/j.enpol.2015.01.026.

Polzin. (2019), How do policies mobilize private finance for RE? A systematic review with an investor perspective. Applied Energy 236 (2019) 1249–1268; https://doi.org/10.1016/j.apenergy.2018.11.098

RECREEE and UNDP (Regional Center for RE and Energy efficiency and United Nations development program. 2019. "Arab Future Energy index: RE 2019." RECREEE and UNDP.

REN21 .(2019), Renewables 2019: Global Status Report, REN21, www.ren21.net/wpcontent/uploads/2019/10/REN21_GSR2019_FullReport_en_11 .pdf.

Romano A. and G. Scandurra. (2016), *Divergences in the determinants of investments in RE sources: hydroelectric vs. other renewable sources.* Journal of Applied Statistics, 43:13, 2363-2376, DOI: 10.1080/02664763.2016.1163526.

UNEP. 2019. "Global Trends in RE Investment 2019." Frankfurt School-UNEP Centre/BNEF.

UNFCCC. (2015), "Adoption of the Paris Agreement." 12 December 2015, Paris, France.

Wenfeng Liu, W. et al. (2018), "Does RE Policy Work? Evidence from a Panel Data Analysis." RE (2018), DOI: 10.1016/j.renene.2018.12.037.

Wolde-Rufael, Y. (2009), Energy consumption and economic growth: The experience of African countries revisited. Energy Economics 31(2), 217-224.

World Bank, RISE. (2020), Regulatory Indicators for Sustainable Energy, https://rise.esmap.org//

Appendix (1): Data Sources and Variables Definitions

Variable	Definition	Source
InshareRE	Percentage of RE in total primary energy supply (TPES)	OECD and EIA
GDDPC	GDP per capita (constant 2010 US\$)	WDI database
Energy imports	Energy imports as percentage of energy use	WDI database
DB	Doing Business Index	WDI database
RE Policy index	RE pillar in RISE index	World Bank
Sub1	Legal and regulatory framework for RE	
Sub2	Planning for RE expansion	
Sub3	Incentives and regulatory support	
Sub4	Attributes of financial and regulatory incentives	
Sub5	Network connection and use	
Sub6	Counterparty risk	
Sub7	Carbon pricing and greenhouse gas monitoring	

Appendix (2): Summary of Descriptive Statistics of Variables

	N	Minimum	Maximum	Mean	Std. Deviation
RE Value	110	0.086	12609.5	1755.108	3449.139
RE %	110	0	81.2326	9.027984	19.35373
In (RE Value)	110	-2.4534	9.4422	4.77912	3.301711
GDPPC	110	1401.478	41460.28	12685.99	13213.62
Ln (GDPPC)	110	7.2453	10.6325	8.902319	1.048373
Energy Import (% energy use)	110	-391.059	97.8655	-81.5834	155.1483
DB Score	110	44.2486	81.5888	60.20284	9.554598
RE Policy	110	2	79	33.79	23.529
Sub-indices					
Sub1	110	0	100	56.55	34.36
Sub2	110	0	80	35.79	25.243
Sub3	110	0	89	24.23	25.584
Sub4	110	0	92	28.89	33.999
Sub5	110	0	83	21.38	23.422
Sub6	110	0	92	38.1	25.218
Sub7	110	0	100	30.45	40.691

Appendix (3): Correlation Matrix

	RE %	ln (GDPPC)	Energy Import	DB Score	Rise
RE %	1	-0.540**	0.235*	-0.449**	-0.231*
Ln (GDPPC)	-0.540**	1	-0.750**	0.565**	-0.169
Energy Import	0.235**	-0.750**	1	-0.11	0.415**
DB Score	-0.449**	.565**	-0.11	1	0.399**
Rise	0.231**	-0.169	0.415**	0.399**	1

Significant at 0.05 level of significance

Appendix (4): Sargan and Arellano and Bond Tests

Sarga	Arellano and Bond test						
H0: over identifying restrictions are valid		H0: No autocorrelation					
Equation (1) Equation (2)		Е	quation (1)	F	Equation	(2)
Chi2(43)=6.06	Chi2(43)=5.706	order	Z	Prop>z	order	Z	Prop>z
Prob> chi2 = 1.000	Prob> chi2 = 1.000	1	-0.99	0.3199	1	-0.99	0.3202
		2	1.11	0.266	2	1.10	0.2681