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Abstract

To forecast volatility in global food commaodity prices, in this paper a number
of alternative competing models are employed, thin tailed normal distribution, and
fat-tailed Student t-distribution GARCH models, beside a simple approach of
forecasting volatility based on standard deviations over the previous months as a
forecast of future volatility. Our results indicate the t-distribution model outperforms
the other two approaches, whereas the simple standard deviation approach
outperforms the normal distribution model, suggesting that the normality assumption
of residuals which often taken for granted for its simplicity may lead to unreliable
results of conditional volatility estimates. The paper also shows that some of the food
commodity prices included in the study, such as wheat, rice, and beef exhibit long
memory behavior, implying persistence of the effect of a shock for longer periods
compared to other commodities in the group. The evidence of long memory process
supports the view that structural changes in demand and supply side factors are more
effective than short-term speculative factors.
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1. Introduction

The soaring global food prices for the past three years exacerbated political
and social unrest in many parts of the world, especially in those countries with high
rates of unemployment and high poverty levels as manifested in recent public revolts,
which toppled so far the ruling regimes in Tunisia and Egypt. The spillover effects of
those uprises engulfed the whole Middle East region including Libya, Yemen,
Bahrain, and Jordan. Political regimes, outside the Middle East, as in Africa, Asia,
and Latin America, are also feeling the heat of the global food price volatility. All
these countries included in their top agenda economic and distribution policies aiming
to contain food price inflation in attempts to safeguard against potential political
unrest. In Latin America countries, Honduras has frozen prices on a number of basic
foodstuffs despite complaints from farmers. El Salvador government embraced a
range of anti-poverty programs including food items subsidy policies, and Guatemala
has slashed import tariff on wheat and considering programs of food and cash
vouchers’ handouts to poor peasants.

On supply side of food commodities catastrophic storms and droughts
aggravated food production and storage capacities as flooding, powerful winter
storms, massive cyclone and fire, destroyed in recent months large parts of farms in
the major production sources including Australia, Russia and the United States of
America. Beside disruptive demand and supply side factors analysts also attribute the
rising volatility in food commodity prices to speculations in future commodity
markets (FAO, 2008). However, Jeffrey Frankel (2008) attributes the soaring prices in
food commodities to structural change in global demand for food items, mainly due to
the high and rapid economic growth in countries like China and India. Whatever
would be the prime cause behind the soaring food commodity prices, it is important to
point out that volatility modeling can help capturing empirical regularities that
characterize commodity markets. While the literature on volatility of food commodity
markets in general is scarce, compared to the literature on financial asset markets, a
number of authors investigated volatility in food commodity markets from the
perspective of spillover effect of crude oil price (Babula and Somwaru, 1992; Uri,
1996; Du et al., 2009; Onour, 2010). Broadly speaking, the literature on volatility
forecast in commodity markets includes, two main approaches, implied volatility
models which are based on option pricing formulas, and conditional volatility models
of time series analysis.

However, it should be noted that the implied volatility approach of expected
volatility has a number of draw backs. Among which as noted by Kroner et al. (1993),
volatility forecast based on implied volatility approach may be more appropriate for
short-term forecast, but may not yield reliable long-term forecast since usually trading
is thin in options that are far away from their maturity dates.

As a result, in this paper we adopt time series modeling approach in
forecasting conditional volatility in food commodity prices.

It is well documented (Bollerslev et al., 2003) that fat-tailedness in asset and
commodity markets is intimately related to so-called volatility clustering, which
describes the phenomena that large changes in prices, in either sign, tend to be
followed by large changes, and small changes followed by small changes, reflecting



market irregularities. Thus, volatility modeling can reveal market imperfection in
global food commodity markets. Bollerslev et al. (2003) indicated that, the normality
assumption is at odds when price changes exhibit fat-tailedness (leptokurtosis
behavior). It has been evidenced recently by a number of authors (Brooks and Persand
(2003), Vilasus (2002), and Hansen and Launda (2003), the standard GARCH models
which use normality assumption has inferior forecasting performance compared to
models that reflect skewness and kurtosis in innovations. In this paper beside the
normal distribution based GARCH approach, we employed t-distribution based
GARCH model, and simple historical volatility approach, based on the sample
standard deviation returns over the previous months as a forecast of future volatility.
We will refer to this approach the simple historical approach. This approach is
included in our study because Bartunek and Mustafa (1991) find that for stock
markets the simple historical approach outperformed more sophisticated time series
models. This paper extends our previous work (Onour and Sergi, forthcoming), on
volatility in food commodity prices in two respects. First, it extends the sample size of
the data to include the latest global supply side disruptions of food commodities in
2009, and 2010. Second, the paper employs beside normal distribution and t-
distribution specification of volatility a distribution free approach of forecasting
volatility.

The paper is divided into four sections. Section two includes the methodology
of the research. Section three deals with the estimation procedure and discussion of
the results. In the final section we conclude the research findings.

2. Methodology
2.1 Volatility forecast

Given that p, is the commodity price at time t, and I, , is the information set

at time t-1, then the standard GARCH(1,1) model specified on normal distributed and
Student t-distributed error terms defined as:
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where 7 is degrees of freedom, and
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Given an initial value for atz (the conditional volatility) estimated values for

w, , and £, in equation (3) can be used for estimating expected volatility at any

given horizon time. Using equation (3), the expected volatility can be set (see Engle
and Bollerslev, 1986, equation 22) as:
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Alternatively, using recursive substitution of equation (3) we get,
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To test the predictive power of alternative competing models we employed the Root
Mean Squared Error (RMSE), which is computed by comparing the forecast values
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Where k=1,2,3 denotes the forecast horizon, N, , is total number of k-steps ahead
forecasts.
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Equations (4) and (5) yield forecast of conditional volatility at horizons 1,2 ...k.

It is well documented that the standard GARCH specification as stated in
equations (2) and (3), fail to fully account for leptekurtosis of high frequency time
series when assumed to follow normal distribution. Bollerslev et al. (2003) indicate
ARCH models with conditional normal errors, result in a leptokurtic unconditional
distribution. However, the degree of leptokurtosis induced by the time-varying
conditional variance often does not capture all of the leptokurtosis present in high
frequency speculative price data. To circumvent this problem Bollerslev et al. (2003)
suggest use of Student t-distribution with degrees of freedom greater than two.

When the residual errors in (3) distributed Student t-distribution the density
function in equation (3) can be specified as:

(n+1)/2
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where I'(.), denotes gamma function, and 7 is the degrees of freedom.

Now, we have two competing models, (equations 2 and 6), for estimation of expected
conditional volatility parameters in equation (5).

Given there is no common single conventional model selection criteria, to
assess the goodness-of-fit for the two models we employed, the predictive power
performance criteria, and three other criterias including the log-likelihood function,
Akaike information criteria (AIC), and Schwarz criteria (SC) as indicated below:

AIC =-2(1/T)+2(k/T)
SC =—2(1/T) +klog(T),T



Where k and (T) are respectively the number of parameters and the sample
size, and | is the lag length. The model that minimizes the above information criteria
considered the best fit, given that the model also yield highest log likelihood value
and the best predictive power represented in the smallest Root Mean square Error
(RMSE) values.

To capture volatility persistence we also need to address the ARFIMA
process as indicated in the following section.

2.2 Volatility persistence
2.2.1 The ARFIMA(p,d,q) process

GARCH(p,q) models often used for modeling volatility persistence which
have the features of relatively fast decaying persistence. However, in some cases
volatility shows very long temporal dependence, i.e., the autocorrelation function
decays very slowly. This motivates consideration of Fractionally Integrated
Generalized Autoregressive Conditional Hetroskedasticity (FIGARCH) process:
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and L is lag operator, d is fractional differencing parameter, all roots of ¢#(L) and
6(L) assumed to lie out side the unit circle, and ¢, is white noise. The ARFIMA
(p,d,q) in volatility can be defined(Baillie et al., 1996) as :

p(L)A-L)" & =w+{l- (L)}, (8)

where ¢(L) and S(L)are respectively the AR(p) and MA(q) vector coefficients and

2 2
v, =¢& -0,

Following Baillie et al. (1996), Bollerslev and Mikkelsen (1996), Granger and
Ding (1996), the parameters in the ARFIMA(p,d,q) and FIGARCH(p,d,q) models in
(7) and (8) estimated using quasi-maximum likelihood (QMLE) method. In the
ARFIMA models, the short-run behavior of the data series is represented by the
conventional ARMA parameters, while the long-run dependence can be captured by
the fractional differencing parameter, d. A similar result also applies when modeling
conditional variance, as in equation (8). While for the covariance stationary
GARCH(p,q) model a shock to the forecast of the future conditional variance dies out
at an exponential rate, for the FIGARCH(p,d,q) model the effect of a shock to the

“ For the FIGARCH(p,d,q) model to be well defined, and the conditional variance positive for all t, all
the coefficients in the ARCH representation must be non-negative.



future conditional variance decay at low hyperbolic rate. As a result, the fractional
differencing parameter, d, in the equations (7) and (8) can be regarded the decay rate
of a shock to the conditional variance (Bollerslev, 1996).

In general, allowing for values of d in the range between zero and unity (or,
0<d<1) add a flexibility that play an important role in modeling long-run dependence
in time series’.

Bollerslev, 1996, indicates that if d=0, the series is covariance stationary and
possess short memory process, whereas in the case of d=1 the series is non-stationary.
However, in the case of 0<d<0.5, the series even though covariance stationary, its
auto-covariance decays much more slowly than ARMA process. If d is 0.5<d<1 the
series is no longer covariance stationary, but still mean reverting with the effect of a
shock persist for a long period of time, and in that case the process is said to have a
long memory. Given a discrete time series, y,, with autocorrelation function, p;, at

lag j, Mcleod and Hipel (1978) define long memory as a process:

Zn:‘pj‘ as N—>ow (9)

j=n

characterized as nonfinite. In the non-stationary and in the long memory process a
shock at time t, continues to influence future y,,, for a longer horizon, k, than would

be the case for the standard stationary ARMA process. While there are varieties of
ways to estimate the parameters of (3) and (4), in this paper we employed the
maximum likelihood estimator.

To further check volatility persistence we need to investigate independent and
identical distribution of price changes, using correlation integral approach as
illustrated in the following section.

2.3 Correlation Integral

Since our primary goal in this paper to investigate the predictive power of
alternative competing models, it remains to clarify predictability of future price
changes based on the past changes. To do so, we need to test if our sample series
exhibit independent and identical distribution behavior. Brock et al.,(1987) proposed a
test (known as BDS test) of independent, identical distribution based on the
correlation integral, a concept that arises in chaos theory. Kocenda (2001) proposed a
modified version of BDS test that accommodates some of the shortcomings in BDS
test. To explain Kocenda (2001) approach, let Y, be a part of a time series
Y11=(Y7,...Y1) suchthat Yu=(YtYt1,...Yine1) . Compare a pair of such vectors Y,
and Y. The correlation integral is defined as:

Tn -1 Tn

Cn,T (g) = 2(Tn (Tn _1)) - Ie (Yt,n ’Ys,n)

t=1 s=t+l

" See Diebold and Rudebuch (1989); Cunado et al (2005); and Granger and Ding (1996) for a detailed
discussion about the importance of allowing for non-integer values of integration when modeling long-
run dependence in the conditional mean of time series data.



whereT, =T —n+1,and 1(Y,,.Y,,) isan indicator function of the event
H\(t Y |<e 1=0,1,.n-1 (10)

So that, (Y,,Y,) inequation (10) are said to be no more than ¢ distant a part.
Brock et al (1987) defined
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Where m, and & respectively denote the embedding dimension (or lags) and
the proximity parameters, which both to be defined, ex ante, by the investigator.
Under the hypothesis that {Y} is an i.i.d. process, (11) has asymptotic normal
distribution with zero mean and variance (Brock et al (1987)). Note-that (11) depends
on n and e which the investigator has to choose and that the size of the test is very
sensitive to these two parameters. To resolve such a problem, Kocend (2001)
introduced some changes to BDS test, in his test known as K2K test. This alternative
approach is based on calculating the slope of the log of the correlation integral versus
the log of the proximity parameter, ¢ over a range of values of the proximity
parameter, ¢. The slope parameter in K2K test defined as:

Z((ln(c“) —In(&))(In(c, (&) - In(c, (¢))

< 5 (n@) - @) 2

where In(g) is defined as the log of proximity parameter, In(c,(g)) is the

correlation integral value, and the variables with a bar stand for the mean values of the
corresponding variables without a bar. Since a range of different values of mand ¢ in
equation (12), the alternative modification of K2K testing procedure dispense with
the pre-choice condition of the two parameter.

3. Empirical Results

Using monthly data of global food commodity prices for wheat, rice, sugar,
groundnut, and beef this paper aims to compare the predictive power of alternative
models. The time period of our sample covers from January 1981 to December 2010.
The data collected from Index Mundi website, which extracted from the IMF, Primary
Commodity Price Tables’. Results in table (1) reject the null hypothesis of
independent, identical distribution process for all commodity prices in the table. To
estimate the parameters in equations (2) - (5) we used maximum likelihood estimation
procedure. Price changes included in figures (1) to (5), reveal evidence of fat-
tailedness of price changes as revealed by the frequent spikes of price changes,
indicating evidence of volatility clustering, which is the phenomena that large changes
in prices, in either sign, tend to be followed by large changes, and small changes
followed by small changes. Table (2) presents estimation results of the parameters in
the conditional volatility equations (2)-(3), under the normal and the t-distribution
residual error terms. Results of GARCH(1,1) parameters show evidence of
stationarity of conditional volatility. The log likelihood, and the information criteria
test results overwhelmingly support the t-distribution specification of the innovations

* http:/;www.indexmundi.com/



in the AR(1) model in equation (1). This is consistent with the existing literature on
asset markets, which indicate evidences of conditional leptokurtosis in high and
medium frequency data analysis (Bai et al., 2003). To further investigate, robustness
of the t-distribution error terms specification we conducted, using in-sample forecast
analysis, its predictive power compared to the normal distribution error terms and
simple historical volatility approach, based on the standard deviation returns over the
previous months as a forecast of future volatility, using Root Mean Squared Errors
(RMSE) loss function criteria. Results in table (4) reveal the t-distribution model
overwhelmingly outperforms the more popular normal distribution specification.
Furthermore, the simple forecast approach based on historical standard deviations
outperforms the normal distribution approach, indicating that the normality
assumption despite its popularity in empirical research it may not yield reliable
prediction of volatility in global food prices. Table (5) report FIGARCH(1,d,1)
results, indicating evidence of stationary intermediate memory process (covariance
stationary and slowly decaying auto-covariance) for sugar and groundnut. But the
prices of beef, rice and wheat exhibit long memory behavior (covariance non-
stationary, but mean reverting), indicating the likelihood of persistence of a shock for
long periods. The evidence of long memory process support the view that volatility in
those commodities is not driven by short-term speculative factors, but it is rather
influenced mainly by structural changes in demand side factors, along the view point
of Jeffrey Frankel (2008).

Table (1): K2K test

IEClmbedc!lng wheat | rice | sugar | beef | groundnut
imension

m; 0.63 0.52 0.82 0.83 1.05
ms 0.70 0.58 0.94 0.95 1.28
my 0.76 0.65 1.06 1.08 1.51
Ms 0.83 0.71 1.17 1.19 1.73
Me 0.90 0.77 1.28 1.30 1.95
my; 0.96 0.82 1.40 1.40 2.18
mg 1.03 0.88 1.52 1.51 2.39
Mg 1.09 0.94 1.64 1.62 2.60
Mg 1.15 1.00 1.75 1.73 2.80

Note: Epsilon range: 0.60 — 1.90.
Significance: all entries reject the null-hypothesis at 1%.



Table (2) : GARCH Parameters

Wheat Rice Beef Groundnut

Normal | t-dist Normal t-dist Normal | t-dist Normal | t-dist
w 0.046* 0.0025* | 0.037* 0.002* 0.035* 0.0012* | 0.048* | 0.003*
(p-value) | (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
a 0.41* 0.022* 0.45* 0.026* -0.14 -0.005 -0.082 | -0.005
(p-value) | (0.00) (0.00) (0.00) (0.00) (0.23) (0.23) (0.56) (0.60)
Yis 0.15* 0.15* 0.36* 0.36* 0.026 0.026 0.27* 0.27*
(p-value) (0.00) (0.00) (0.00) (0.00) (0.61) (0.62) (0.00) (0.00)
LLF 274 1310 204 1214 386 1566 75 1033
AIC 0.012 0.37E-4 | 0.018 0.64E-4 0.0067 0.89E-5 | 0.039 0.17E-3
SC 0.013 0.39E-4 | 0.019 0.66E-4 0.007 0.92E-5 | 0.040 0.18E-3

Note: Estimated values of parameters rounded into two decimals.

Terms in parenthesis are P-values.

*significant at 5% significance level.

Note: Estimated values of parameters
rounded into two decimals.

Table (3) : GARCH parameters

Sugar

Normal t-dist
w 0.075* 0.006*
(p-value) (0.00) (0.00)
a -0.038 -0.002
(p-value) (0.66) (0.76)
Yij 0.138* 0.14*
(p-value) (0.00) (0.00)
LLF 197 1063
AIC 0.019 0.15E-3
SC 0.020 0.15E-3

Terms in parenthesis are P-values.

*significant at 5% significance level.




Table (4) - RMSE Loss functions

RMSE Loss Functions

Normal t-dist. Historical
Wheat*
A month 0.062 0.0034 0.036
2 month 0.074 0.0034 0.035
3 month 0.066 0.0032 0.038
Rice*
A month 0.066 0.0038 0.036
2 month 0.088 0.0039 0.039
3 month 0.077 0.0036 0.042
Beef*
A month 0.039 0.0014 0.025
2 month 0.037 0.0014 0.026
3 month 0.964 0.0014 0.025
Groundnut*
A month 0.084 0.0057 0.040
2 month 0.086 0.0060 0.045
3 month 0.082 0.0056 0.042
Sugar*
A month 0.088 0.0077 0.054
2 month 0.087 0.0078 0.059
3 month 0.084 0.0074 0.058

*The loss functions are based on h-month ahead forecast errors.

Table (5) - FIGARCH(1,d,1): t-distribution

parameters | wheat | rice | beef | groundnut | sugar
dl 0.47* | 0.56* | 0.55* | 0.41 0.45
(std.error) (0.06) | (0.05) | (0.05) | (0.06) (0.06)
@, -0.24 |-0.21 |-0.48 |-0.15 -0.16
(std.error) (0.07) | (0.07) | (0.05) | (0.07) (0.07)
él 0.01 |0.002 |0.40 |0.01 0.40
(std.error) (0.98) | (0.95) | (0.99) | (1.0) (0.97)
LLF 1288 | 1207 | 1546 | 1025 1035

*mean reverting, but long memory process.
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4. Concluding remarks

To forecast volatility in global food commodity prices in this paper we
employed thin tailed normal distribution, and fat-tailed Student t-distribution GARCH
models, beside a simple approach of forecasting volatility based on standard
deviations over the previous months as a forecast of future volatility. The sample
period in the study covers monthly price series for food commodities of wheat, rice,
beef, groundnut, and sugar, during the period from October 1982 to December 2010.
Based on the predictive power of volatility forecast and other goodness of fit
measures the analysis in the paper indicates the t-distribution model outperforms the
other two approaches, revealing evidence of leptokurtosis in the volatility of food
commodity prices. This result implies that if such leptokurtic behavior is not taken
into account when estimating conditional volatility, the standard option pricing
formula of Black and Scholes, which depends on expected volatility parameter, could
lead into unreliable results when pricing future option contracts in commodity
markets. Our results, also show evidence of stationary intermediate memory process
(covariance stationary and slowly decaying auto-covariance) for sugar and groundnut.
But the prices of beef, rice and wheat exhibit long memory behavior (covariance non-
stationary, but mean reverting), indicating possible persistence of a shock for long
periods. The evidence of long memory process support the view that, structural
changes in demand and supply side are more influential than short-term speculative
factors.
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