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Abstract 

 

To forecast volatility in global food commodity prices, in this paper a number 

of alternative competing models are employed, thin tailed normal distribution, and 

fat-tailed Student t-distribution GARCH models, beside a simple approach of 

forecasting volatility based on standard deviations over the previous months as a 

forecast of future volatility. Our results indicate the t-distribution model outperforms 

the other two approaches, whereas the simple standard deviation approach 

outperforms the normal distribution model, suggesting that the normality assumption 

of residuals which often taken for granted for its simplicity may lead to unreliable 

results of conditional volatility estimates. The paper also shows that some of the food 

commodity prices included in the study, such as wheat, rice, and beef exhibit long 

memory behavior, implying persistence of the effect of a shock for longer periods 

compared to other commodities in the group. The evidence of long memory process 

supports the view that structural changes in demand  and supply side factors are more 

effective than short-term speculative factors.   

   

 تنبؤ التذبذبات في الأسعار العالمية للسلع الغذائية
 

 ملخص

ة لمجووعة هي السلع الغزائٍة باستخذام حلاث نمارد إحصائٍة لقٍاس تهذف الوسقة قٍاس دقة تنبؤات التزبزب للأسعاس العالمٍ
تتضوي النوارد الخلاث التوصٌع الطبٍعً الزي ٌتسن بزٌل ضعٍف، وتوصٌع ت الزي ٌتسن بزٌل سمٍك . التزبزب المششوط لأسعاس السلع

سة أى نمورد توصٌع ت هو الأفضل هي حٍج دقة التنبؤ توضح ًتائذ الذسا. بالإضافة لاستخذام نمورد لا هعلوٍة ٌستنذ للتزبزبات التاسيخٍة
ذ هي بالتزبزبات في الأسعاس العالمٍة للسلع الغزائٍة هوضع البحج وعلٍه تشرح الذساسة في عذم دقة التنبؤات في أسعاس السلع الغزائٍة للعذٌ

 .التوصٌع الطبٍعً الذساسات التطبٍقٍة في هزا المجال إلى الاعتواد على نمزرة التزبزبات وفقاً لنوورد
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1. Introduction 
 

 The soaring global food prices for the past three years exacerbated political 

and social unrest in many parts of the world, especially in those countries with high 

rates of unemployment and high poverty levels as manifested in recent public revolts, 

which toppled so far the ruling regimes in Tunisia and Egypt. The spillover effects of 

those uprises engulfed the whole Middle East region including Libya, Yemen, 

Bahrain, and Jordan. Political regimes, outside the Middle East, as in Africa, Asia, 

and Latin America, are also feeling the heat of the global food price volatility. All 

these countries included in their top agenda economic and distribution policies aiming 

to contain food price inflation in attempts to safeguard against potential political 

unrest. In Latin America countries,  Honduras has frozen prices on a number of basic 

foodstuffs despite complaints from farmers. El Salvador government embraced a 

range of anti-poverty programs including food items subsidy policies, and Guatemala 

has slashed import tariff on wheat and considering programs of food and cash 

vouchers’ handouts to poor peasants.  

 

 On supply side of food commodities catastrophic storms and droughts 

aggravated food production and storage capacities as flooding, powerful winter 

storms, massive cyclone and fire, destroyed in recent months large parts of farms in 

the major production sources including Australia, Russia and the United States of 

America. Beside disruptive demand and supply side factors analysts also attribute the 

rising volatility in food commodity prices to speculations in future commodity 

markets (FAO, 2008). However, Jeffrey Frankel (2008) attributes the soaring prices in 

food commodities to structural change in global demand for food items, mainly due to 

the high and rapid economic growth in countries like China and India. Whatever 

would be the prime cause behind the soaring food commodity prices, it is important to 

point out that volatility modeling can help capturing empirical regularities that 

characterize commodity markets. While the literature on volatility of food commodity 

markets in general is scarce, compared to the literature on financial asset markets, a 

number of authors investigated volatility in food commodity markets from the 

perspective of spillover effect of crude oil price (Babula and Somwaru, 1992; Uri, 

1996; Du et al., 2009; Onour, 2010). Broadly speaking, the literature on volatility 

forecast in commodity markets includes, two main approaches, implied volatility 

models which are based on option pricing formulas, and conditional volatility models 

of time series analysis.  

 

However, it should be noted that the implied volatility approach of expected 

volatility has a number of draw backs. Among which as noted by Kroner et al. (1993), 

volatility forecast based on implied volatility approach may be more appropriate for 

short-term forecast, but may not yield reliable long-term forecast since usually trading 

is thin in options that are far away from their maturity dates. 

 

As a result, in this paper we adopt time series modeling approach in 

forecasting conditional volatility in food commodity prices.  

 

It is well documented (Bollerslev et al., 2003) that fat-tailedness in asset and 

commodity markets is intimately related to so-called volatility clustering, which 

describes the phenomena that large changes in prices, in either sign, tend to be 

followed by large changes, and small changes followed by small changes, reflecting 
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market irregularities. Thus, volatility modeling can reveal market imperfection in 

global food commodity markets. Bollerslev et al. (2003) indicated that, the normality 

assumption is at odds when price changes exhibit fat-tailedness (leptokurtosis 

behavior). It has been evidenced recently by a number of authors (Brooks and Persand 

(2003), Vilasus (2002), and Hansen and Launda (2003), the standard GARCH models 

which use normality assumption has inferior forecasting performance compared to 

models that reflect skewness and kurtosis in innovations. In this paper beside the 

normal distribution based GARCH approach, we employed t-distribution based 

GARCH model, and simple historical volatility approach, based on the sample 

standard deviation returns over the previous months as a forecast of future volatility. 

We will refer to this approach the simple historical approach. This approach is 

included in our study because Bartunek and Mustafa (1991) find that for stock 

markets the simple historical approach outperformed more sophisticated time series 

models. This paper extends our previous work (Onour and Sergi, forthcoming), on 

volatility in food commodity prices in two respects. First, it extends the sample size of 

the data to include the latest global supply side disruptions of food commodities in 

2009, and 2010. Second, the paper employs beside normal distribution and t-

distribution specification of volatility a distribution free  approach of forecasting 

volatility.    

 

The paper is divided into four sections. Section two includes the methodology 

of the research. Section three deals with the estimation procedure and discussion of 

the results. In the final section we conclude the research findings. 

 

2. Methodology 
 
2.1 Volatility forecast 

 

Given that tp  is the commodity price at time t, and 1tI  is the information set 

at time t-1, then the standard GARCH(1,1) model specified on normal distributed and 

Student t-distributed error terms defined as: 
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where    is degrees of freedom, and 
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Given an initial value for 
2

t (the conditional volatility) estimated values for 

 andw ,, , in equation (3) can be used for estimating expected volatility at any 

given horizon time. Using equation (3), the expected volatility can be set (see Engle 

and Bollerslev, 1986, equation 22) as: 
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Alternatively, using recursive substitution of equation (3) we get, 
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 To test the predictive power of alternative competing models we employed the Root 

Mean Squared Error (RMSE), which is computed by comparing the forecast values  

jtF  with the actually realized values,  jtA  , or   
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Where k=1,2,3 denotes the forecast horizon, kN , is total number of k-steps ahead 

forecasts. 

 

Equations (4) and (5) yield forecast of conditional volatility at horizons 1,2 …k.  

 

 It is well documented that the standard GARCH specification as stated in 

equations (2) and (3), fail to fully account for leptekurtosis of high frequency time 

series when assumed to follow normal distribution. Bollerslev et al. (2003) indicate 

ARCH models with conditional normal errors, result in a leptokurtic unconditional 

distribution. However, the degree of leptokurtosis induced by the time-varying 

conditional variance often does not capture all of the leptokurtosis present in high 

frequency speculative price data. To circumvent this problem Bollerslev et al. (2003) 

suggest use of Student t-distribution with degrees of freedom greater than two.  

 

When the residual errors in (3) distributed Student t-distribution the density 

function in equation (3) can be specified as: 
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where (.) , denotes gamma function, and    is the degrees of freedom.  

Now, we have two competing models, (equations 2 and 6), for estimation of expected 

conditional volatility parameters in equation (5). 
 

Given there is no common single conventional model selection criteria, to 

assess the goodness-of-fit for the two models we employed, the predictive power 

performance criteria, and three other criterias including the log-likelihood function, 

Akaike information criteria (AIC), and Schwarz criteria (SC) as indicated below: 
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 Where k and (T) are respectively the number of parameters and the sample 

size, and l  is the lag length. The model that minimizes the above information criteria 

considered the best fit, given that the model also yield highest log likelihood value 

and  the best predictive power represented in the smallest Root Mean square Error 

(RMSE) values. 

  

 To capture volatility persistence we also need to  address the ARFIMA 

process as indicated in the following section. 

 

2.2 Volatility persistence 
 
   2.2.1 The ARFIMA(p,d,q) process 

 

GARCH(p,q) models often used for modeling volatility persistence which 

have the features of relatively fast decaying persistence. However, in some cases 

volatility shows very long temporal dependence, i.e., the autocorrelation function 

decays very slowly. This motivates consideration of Fractionally Integrated 

Generalized Autoregressive Conditional Hetroskedasticity (FIGARCH) process: 

 

                           (7) 

 

and L is lag operator, d is fractional differencing parameter, all roots of )(L  and 

)(L assumed to lie out side the unit circle, and t  is white noise. The  ARFIMA 

(p,d,q) in volatility can be defined(Baillie et al., 1996) as
*
: 
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where )()( LandL  are respectively the AR(p) and MA(q) vector coefficients and 
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Following Baillie et al. (1996), Bollerslev and Mikkelsen (1996), Granger and 

Ding (1996), the parameters in the ARFIMA(p,d,q) and FIGARCH(p,d,q) models in 

(7) and (8) estimated using quasi-maximum likelihood (QMLE) method. In the 

ARFIMA models, the short-run behavior of the data series is represented by the 

conventional ARMA parameters, while the long-run dependence can be captured by 

the fractional differencing parameter, d. A similar result also applies when modeling 

conditional variance, as in equation (8). While for the covariance stationary 

GARCH(p,q) model a shock to the forecast of the future conditional variance dies out 

at an exponential rate, for the FIGARCH(p,d,q) model the effect of a shock to the 

                                                
* For the FIGARCH(p,d,q) model to be well defined, and the conditional variance positive for all t, all 

the coefficients in the ARCH representation must be non-negative. 
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future conditional variance decay at low hyperbolic rate. As a result, the fractional 

differencing parameter, d, in the equations (7) and (8) can be regarded the decay rate 

of a shock to the conditional variance (Bollerslev, 1996). 

 

In general, allowing for values of d in the range between zero and unity (or, 

0<d<1) add a flexibility that play an important role in modeling long-run dependence 

in time series
†
. 

 

Bollerslev, 1996, indicates that if d=0, the series is covariance stationary and 

possess short memory process, whereas in the case of d=1 the series is non-stationary. 

However, in the case of  0<d<0.5, the series even though covariance stationary, its 

auto-covariance decays much more slowly than ARMA process. If d is 0.5<d<1 the 

series is no longer covariance stationary, but still mean reverting with the effect of a 

shock persist for a long period of time, and in that case the process is said to have a 

long memory. Given a discrete time series, ty , with autocorrelation function, j , at 

lag j, Mcleod and Hipel (1978) define long memory as a process: 




nas
n

nj

j    (9) 

 

characterized as nonfinite. In the non-stationary and in the long memory process a 

shock at time t, continues to influence future kty  for a longer horizon, k, than would 

be the case for the standard stationary ARMA process. While there are varieties of 

ways to estimate the parameters of (3) and (4), in this paper we employed the 

maximum likelihood estimator. 

 

 To further check volatility persistence we need to investigate independent and 

identical distribution of price changes, using correlation integral approach as 

illustrated in the following section. 

 

2.3 Correlation Integral 

 

 Since our primary goal in this paper to investigate the predictive power of 

alternative competing models, it remains to clarify predictability of future price 

changes based on the past changes. To do so, we need to test if our sample series 

exhibit independent and identical distribution behavior. Brock et al.,(1987) proposed a 

test (known as BDS test) of independent, identical distribution based on the 

correlation integral, a concept that arises in chaos theory. Kocenda (2001) proposed a 

modified version of BDS test that accommodates some of the shortcomings in BDS 

test. To explain Kocenda (2001) approach,  let Yt,n be a part of  a time series 

YT,T=(YT,…Y1)  such that  Ytn,=(Yt,Yt-1,…Yt-n+1) . Compare a pair of such vectors Ytn, 

and Ysn,. The correlation integral is defined as: 
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† See Diebold and Rudebuch (1989); Cunado et al (2005); and Granger and Ding  (1996) for  a detailed 

discussion about the importance of allowing for non-integer values of integration when modeling  long-

run dependence in the conditional mean of time series data. 
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  1 nTTwhere n , and ),( ,, nsnt YYI  is an indicator function of the event  

1-0,1,...ni    max,,   isitjsjt YYYY            (10) 

So that, ),( st YY  in equation (10)  are said to be no more than  distant a part. 

Brock et al (1987) defined 

 nn CCnS )(ˆ)(ˆ),( 1                 (11) 

 

 Where m, and   respectively denote the embedding dimension (or lags) and 

the proximity parameters, which both to be defined, ex ante, by the investigator. 

Under the hypothesis that {Yt} is an i.i.d. process, (11) has asymptotic normal 

distribution with zero mean and variance (Brock et al (1987)). Note-that (11) depends 

on n and  which the investigator has to choose and that the size of the test is very 

sensitive to these two parameters. To resolve such a problem, Kocend (2001) 

introduced some changes to BDS test, in his test known as K2K test. This alternative 

approach is based on calculating the slope of the log of the correlation integral versus 

the log of the proximity parameter,  over a range of values of the proximity 

parameter,  . The slope parameter in K2K test defined as: 
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 where )ln(  is defined as the log of proximity parameter, ))(ln( nc  is the 

correlation integral value, and the variables with a bar stand for the mean values of the 

corresponding variables without a bar. Since a range of different values of m and  in  

equation (12), the alternative modification of K2K testing procedure  dispense with 

the  pre-choice condition of the two parameter. 

 

3. Empirical Results 
 

 Using monthly data of global food commodity prices for wheat, rice, sugar, 

groundnut, and beef this paper aims to compare the predictive power of alternative 

models. The time period of our sample covers from January 1981 to December 2010. 

The data collected from Index Mundi website, which extracted from the IMF, Primary 

Commodity Price Tables
‡
. Results in table (1) reject the null hypothesis of 

independent, identical distribution process for all commodity prices in the table. To 

estimate the parameters in equations (2) - (5) we used maximum likelihood estimation 

procedure. Price changes included in figures (1) to (5), reveal evidence of fat-

tailedness of price changes as revealed by the frequent spikes  of price changes, 

indicating evidence of volatility clustering, which is the phenomena that large changes 

in prices, in either sign, tend to be followed by large changes, and small changes 

followed by small changes. Table (2) presents estimation results of the parameters in 

the conditional volatility equations (2)-(3), under the normal and the t-distribution 

residual error terms. Results of GARCH(1,1) parameters show evidence of 

stationarity of conditional volatility. The log likelihood, and the information criteria 

test results overwhelmingly support the t-distribution specification of the innovations 

                                                
‡ http://www.indexmundi.com/ 
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in the AR(1) model in equation (1). This is consistent with the existing literature on 

asset markets, which indicate evidences of conditional leptokurtosis in high and 

medium frequency data analysis (Bai et al., 2003). To further investigate, robustness 

of the t-distribution error terms specification we conducted, using in-sample forecast 

analysis, its predictive power compared to the normal distribution error terms and  

simple historical volatility approach, based on the standard deviation returns over the 

previous months as a forecast of future volatility, using Root Mean Squared Errors 

(RMSE) loss function criteria. Results in table (4) reveal the t-distribution model 

overwhelmingly outperforms the more popular normal distribution specification. 

Furthermore, the simple forecast approach based on historical standard deviations 

outperforms the normal distribution approach, indicating that the normality 

assumption despite its popularity in empirical research it may not yield reliable 

prediction of volatility in global food prices. Table (5) report FIGARCH(1,d,1) 

results, indicating evidence of stationary intermediate  memory process (covariance 

stationary and slowly decaying auto-covariance) for  sugar and groundnut. But the 

prices of beef, rice and wheat exhibit long memory behavior (covariance non-

stationary, but mean reverting), indicating the likelihood of persistence of a shock for 

long periods. The evidence of long memory process support the view that volatility in 

those commodities is not driven by short-term speculative factors, but it is rather 

influenced mainly by structural changes in demand side factors, along the view point 

of Jeffrey Frankel (2008). 

 

Table (1): K2K test 

 

Embedding 

dimension 
wheat rice sugar beef groundnut 

m2 0.63 0.52 0.82 0.83 1.05 

m3 0.70 0.58 0.94 0.95 1.28 

m4 0.76 0.65 1.06 1.08 1.51 

m5 0.83 0.71 1.17 1.19 1.73 

M6 0.90 0.77 1.28 1.30 1.95 

m7 0.96 0.82 1.40 1.40 2.18 

m8 1.03 0.88 1.52 1.51 2.39 

m9 1.09 0.94 1.64 1.62 2.60 

m10 1.15 1.00 1.75 1.73 2.80 
 
Note: Epsilon range: 0.60 – 1.90. 
Significance: all entries reject the null-hypothesis at 1%. 



 9 

 

Table (2) : GARCH  Parameters 
 

          Wheat               Rice            Beef   Groundnut 

 Normal t-dist Normal t-dist Normal t-dist Normal t-dist 

w 

(p-value) 

0.046* 
(0.00) 

0.0025* 
(0.00) 

0.037* 
(0.00) 

0.002* 
(0.00) 

0.035* 
(0.00) 

0.0012* 
(0.00) 

0.048* 
(0.00) 

0.003* 
(0.00) 

  

(p-value) 

0.41* 

(0.00) 

0.022* 

(0.00) 

0.45* 

(0.00) 

0.026* 

(0.00) 

-0.14 

(0.23) 

-0.005 

(0.23) 

-0.082 

(0.56) 

-0.005 

(0.60) 

  

(p-value) 

0.15* 
(0.00) 

0.15* 
(0.00) 

0.36* 
(0.00) 

0.36* 
(0.00) 

0.026 
(0.61) 

0.026 
(0.62) 

0.27* 
(0.00) 

0.27* 
(0.00) 

LLF 274 1310 204 1214 386 1566 75 1033 

AIC 0.012 0.37E-4 0.018 0.64E-4 0.0067 0.89E-5 0.039 0.17E-3 

SC 0.013 0.39E-4 0.019 0.66E-4 0.007 0.92E-5 0.040 0.18E-3 
 
Note: Estimated values of parameters rounded into two decimals.  

Terms in parenthesis  are P-values.  

*significant at 5% significance level. 

 

 

Table (3) : GARCH parameters 
 

             Sugar 

 Normal t-dist 

w 

(p-value) 

0.075* 

(0.00) 

0.006* 

(0.00) 

  

(p-value) 

-0.038 
(0.66) 

-0.002 
(0.76) 

  

(p-value) 

0.138* 

(0.00) 

0.14* 

(0.00) 

LLF 197 1063 

AIC 0.019 0.15E-3 

SC 0.020 0.15E-3 

Note: Estimated values of parameters 

rounded into two decimals.  

Terms in parenthesis  are P-values.  

*significant at 5% significance level. 
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Table (4) - RMSE Loss functions 
 

 RMSE   Loss   Functions 

Normal               t-dist.              Historical 

Wheat* 

A month 

2 month 

3 month 

 

0.062 

0.074 

0.066 

 

0.0034 

0.0034 

0.0032 

 

0.036 

0.035 

0.038 

Rice* 

A month 

2 month 

3 month 

 

0.066 

0.088 

0.077 

 

0.0038 

0.0039 

0.0036 

 

0.036 

0.039 

0.042 

Beef* 

A month 

2 month 

3 month 

 

0.039 

0.037 

0.964 

 

0.0014 

0.0014 

0.0014 

 

0.025 

0.026 

0.025 

Groundnut* 

A month 

2 month 

3 month 

 

0.084 

0.086 

0.082 

 

0.0057 

0.0060 

0.0056 

 

0.040 

0.045 

0.042 

Sugar* 

A month 

2 month 

3 month 

 

0.088 

0.087 

0.084 

 

0.0077 

0.0078 

0.0074 

 

0.054 

0.059 

0.058 
                     
                     *The loss functions are based on h-month ahead forecast errors. 

 

 

Table (5) - FIGARCH(1,d,1): t-distribution 
 

parameters wheat rice beef groundnut sugar 

1d̂  

(std.error) 

0.47* 

(0.06) 

0.56* 

(0.05) 

0.55* 

(0.05) 

0.41 

(0.06) 

0.45 

(0.06) 

1̂  

(std.error) 

-0.24 

(0.07) 

-0.21 

(0.07) 

-0.48 

(0.05) 

-0.15 

(0.07) 

-0.16 

(0.07) 

1̂  

(std.error) 

0.01 

(0.98) 

0.002 

(0.95) 

0.40 

(0.99) 

0.01 

(1.0) 

0.40 

(0.97) 

LLF 1288 1207 1546 1025 1035 
                     
                        *mean reverting, but long memory process. 
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4. Concluding remarks 

 
 To forecast volatility in global food commodity prices in this paper we 

employed thin tailed normal distribution, and fat-tailed Student t-distribution GARCH 

models, beside a simple approach of forecasting volatility based on standard 

deviations over the previous months as a forecast of future volatility. The sample 

period in the study covers monthly price series for food commodities of  wheat, rice, 

beef, groundnut, and sugar, during the period from October 1982 to  December 2010. 

Based on the predictive power of volatility forecast and other goodness of fit 

measures the analysis in the paper indicates the t-distribution model outperforms the 

other two approaches, revealing evidence of leptokurtosis in the volatility of food 

commodity prices. This result implies that if such leptokurtic behavior is not taken 

into account when estimating conditional volatility, the standard option pricing 

formula of Black and Scholes, which depends on expected volatility parameter, could 

lead into unreliable results when pricing future option contracts in commodity 

markets. Our results, also show evidence of stationary intermediate memory process 

(covariance stationary and slowly decaying auto-covariance) for sugar and groundnut.  

But the prices of beef, rice and wheat exhibit long memory behavior (covariance non-

stationary, but mean reverting), indicating  possible persistence of a shock for long 

periods. The  evidence of long memory process support the view that, structural 

changes in demand and supply side are more influential than short-term speculative 

factors.   
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