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Abstract

This paper is motivated by recent findings that current models of stock returns and interest
rates are incapable to capture the actual behavior of those financial variables (like hyper volatility, the
behavior of higher moments and leverage effect), particularly during rare events. The paper solves
analytically for the optimal portfolio strategies of bonds, stocks and cash when the investment
opportunity set is driven by a mixture of jump diffusion and non-affine stochastic processes of
interest rates and stock returns. Such structure should be able to capture the characteristics of
financial data during rare events as many recent articles indicate. Results show that investors hold a
linear combination of a speculative portfolio and a hedging portfolio, with weights related to the
investor’s risk tolerance. The investor increases (decreases) the speculative allocation in his portfolio
if he expects upward (downward) jump. The amount of increase or decrease to the speculative
portfolio depends on the degree of risk aversion and the investment horizon. The hedging portfolio
consists of additional bond portfolio to hedge against interest rate changes and additional stock
portfolio to hedge against stochastic volatility changes. Those additional hedging portfolios depend
on the duration of the bond and the correlation between stock returns and volatility processes, beside
their dependence on the risk tolerance and investment horizon. The non-affine specification seems to
increase the demand for hedging and captures the leverage effect. Calibration results show that the
joint inclusion of jumps and non-affine structure into the investment opportunity set dynamics
introduces a plausible simultaneous resolution for both Samuelson puzzle and asset allocation puzzle.
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1. Introduction

Finance literature gives strong evidences that jumps in returns and stochastic volatility
are both important components of index returns, especially in explaining the negative
skewness and excess kurtosis in returns distribution. However, recent findings conclude that
models with jumps and the popular diffusive stochastic volatility structure as the one in
Heston (1993) for example are incapable to capture the realistic behavior of returns,
especially during event risks. The source of the problem appears to be in the adopted form of
the volatility process. These findings suggest that there is an additional, rapidly moving factor
in volatility, which is persistent.

Bates (2000) and Pan (2002) suggest that there is evidence supports jumps in
volatility as well. Mantegna and Stanley (1999) conclude that with the presence of thick tails
and / or financial crashes volatility updates by faster than the square root of time, because
thick tails contribute to volatility growth. They suggest that the exponential representation
would be more appropriate. Jones (2003a) suggests that volatility should evolve according to
a non-affine diffusion process. Specifically, he suggests using the constant elasticity of
variance model (CEV) by replacing the square root in the variance diffusion term in Heston
(1993) by an exponent of undermined magnitude as the non-affine interest rate process of
Chan, Karolyi, Longstaff, and Sanders (1992) (CKLS thereafter). Jones (2003a) empirically
conclude that a stochastic volatility model with a CEV specification reflects the hyper
volatility updating at higher level of variance, and it captures as well the leverage effect.
Jones (2003a) results confirm the conclusion of Mantegna and Stanley (1999) the and fast
volatility updating during market crashes.

Same problems arise in the short rates. CKLS (1992), Das (2002), Jones (2003b) and
Johannes (2004) and many others report the importance of non-affine structure and jumps in
interest rates. Das (2002) describe the interest rate dynamics by affine mean-reversion model
with jumps to capture three aspects of short rates dynamics; 1-the behavior of higher
moments of the interest rate demonstrates considerable skewness and kurtosis, 2- it shows
also persistent and high volatility of the short rates and 3- autocorrelation and mean
reversion. CKLS (1992), Jones (2003b) and many others estimate a non-affine model for the
short rates in both drift and diffusion and find that the non-affine specification of the
diffusion term fits real data better than affine structures. As a matter of fact, CKLS (1992)
reject all affine structures of the diffusion term in the interest rate models. Johannes (2004),
on the other hand uses the non-affine stochastic interest rate with jumps to capture the three
aspects that Das (2002) analyzes. Results of these papers generally indicate that jumps and
non-affine structure of the interest rate diffusions are very important in modeling interest
rates dynamics.

The suggestion of improving the volatility and interest rates models by including
jumps has been used in asset pricing and it improved the performance of stochastic volatility
and interest rates models for that purpose. Examples of using jumps in volatility in pricing

! See Bollerlev (1987), Bates (1996a&b), Duffie and Pan (1997), Das and Sundaram (1999), Lewis (2001) and
many others.

2 Including Bakshi, Cao and Chen (1997), Mantegna and Stanley (1999), Bates (2000), Benzoni (2001),
Andersen, Benzoni, and Lund (2002), Pan (2002), Eraker, Johannes and Polson (2003) and Jones (2003a).



include Bakshi, Cao and Chen (1997 and 2000)°, Scott (1997), Bates (2000), Duffie, Pan and
Singleton (2000) and Pan (2002). In asset allocation, Liu, Longstaff, and Pan (2003) use the
double jump model of Duffie, Pan and Singleton (2000) to study the implications of jJumps in
prices and volatility on optimal investment strategy. Examples of using jumps in pricing
interest rate derivatives include Das and Frosti (1996) and Chacko and Das (2002). Those
papers add the jump diffusion to Vasicek (1977) model.

The suggestion of using the non-affine structure in stochastic volatility or interest
rates did not attract much work in asset pricing or asset allocation. In estimation, such models
show good fit for real data. Jones (2003a), and Chacko and Viceira (2003a) estimate different
non-affine stochastic volatility models and report exponent values that are significantly

different from % in Jones (2003a) and higher than 1 in Chacko and Viceira (2003a) almost

for a Il frequencies. Similar results are reported with respect to the short rates, as in CKLS
(1992), Jones (2003b) and Johannes (2004). Obviously, the reason for the lack of using non-
affine processes in asset pricing and asset allocation is the intractability of those models,
since such models do not usually give close form solutions.

This paper fills those gaps by analyzing the optimal portfolio choice when the
investment opportunity set is driven by non-affine CEV stochastic interest rate with jump
diffusions, and non-affine CEV stochastic volatility with jumps in stock returns index. For
the short rates, the paper adopts a single factor model version of Johannes (2004) with
differentiation between upward and downward jumps. The model basically adds jumps to the
non-affine short rates process proposed by CKLS (1992). For stock returns, the paper uses the
mixed non-affine stochastic volatility with jump process estimated by Chacko and Viceira
(2003a). This process is basically the one estimated by Jones (2003a) but mixed with upward
and downward jump diffusion processes. The use of the mixed non-affine structure with
jumps in the short rates and stock returns is to account for the real aspects of financial data
especially during financial crashes and explosions as mentioned in the above sited
literature.”.

Liu, Longstaff, and Pan (2003) test the impact of the corrective procedure that adds
jumps to stochastic volatility in a dynamic asset allocation framework. This paper seeks to
test the impact of the other suggested corrective procedure on the square root processes of
stochastic volatility and short rates. It tests the impact of non-affine structure of stochastic
volatility combined with jumps in return index on the optimal asset allocation. Chernov,
Gallant, Ghysels and Tauchen (2003) suggest based on empirical estimation that affine
models have to have jump in returns, stochastic volatility or both. The model used by Liu,
Longstaff, and Pan (2003) is equivalent to the AFF1V-JJ model of Chernov et al (2003). The
model used in this paper is equivalent to non-affine volatility version of AFF1V-J of
Chernov et al (2003). Chernov et al (2003) did not discuss the non-affine volatility processes
or the (CEV), leaving that to Jones (2003). In Chernov et a/ (2003) the model used in this
paper can be described as NON-AFF1V1r-J0J: non-affine one stochastic volatility- one

® Bakshi, Cao and Chen (1997 and 2000) find that adding jumps to the square root stochastic volatility has a
little impact on pricing or hedging long maturity options. They find that this innovation worsens the
performance for short maturities.

* Early research by Bakshi, Cao and Chen (1997) and Scott (1997) use stochastic interest rate as a corrective
procedure for the short fall of square root stochastic volatility process, but the procedure did not improve their
results. | use the mixed non-affine stochastic interest rate with jumps to solve for the optimal portfolio choice
of bonds, stocks and cash and not as a corrective procedure.



stochastic interest rate with jump in stock returns and jump in interest rates. This model can
be extended easily to include jumps in volatility (NON-AFF1V1r-JJJ) as shown later in the

paper.

The paper basically analyzes the optimal portfolio mix of stocks, bonds and cash
when market crashes (downward jumps) and market explosives (upward jumps) are possible.
In analyzing that, the paper takes into account the hyper updating in volatility associated with
such events in interest rates and stock index returns as well as the leverage effect. Jumps and
stochastic volatility both allow for tail thickness in the stock return distribution. As Mantegna
and Stanley (1999) suggest tail thickness is always associated with fast volatility updating.
Additionally, at high level of volatility the negative correlation between the shocks in stock
returns and shocks in volatility increases, and that strengthening the leverage effect as Jones
(2003a) suggests. The same issue for the short rates, which displays high volatility and excess
skewness and kurtosis that can be captured by the mixed CEV and jump model as suggested
by Das (2002) and Johannes (2004).

As a starting point, | derived explicitly the zero coupon bond price contingents on the
suggested non-affine CEV interest rate process. The closed form solution for the bond price
is obtained by applying some kind of perturbation approximation methods of Kevorkian and
Cole (1981). By deriving the zero coupon bond pricing formula, we can price all other
derivative securities contingent on this bond like the European option, forwards and futures,
swaps, caps, floors and European swaptions. | used the same method of approximation
whenever needed in the paper to linearize the non-affine structure and non-linear terms. By
means of this approximation, | get a linear closed form solution for the optimal portfolio
strategy depends linearly on the model’s parameters and the state variable (volatility). The
optimal portfolio strategies are obtained without using any numerical techniques, even the
standard finite difference techniques used to solve the non-linear expression of the optimal
portfolios derived by Liu, Longstaff, and Pan (2003).

Results show that the optimal asset allocation is a linear combination of a speculative
portfolio and hedging portfolio, weighted by the risk tolerance parameter (defined as a
reciprocal of the relative risk aversion parameter). The demand of the speculative portfolio
increases with the degree of risk tolerance, whereas the demand for the hedging portfolio
decreases with risk tolerance. Although results indicate that investors are increasing or
decreasing their speculative portfolio regarding to their expectation about upward and
downward jumps, but it shows also that investors would increase their holdings during
upward jumps to hedge the effect of downward jumps. The increase in allocation (during
upward jumps) and the decrease in allocation (during downward jumps) depend crucially on
the investment horizon and the risk aversion parameter.

The hedging portfolio on the other hand, consists of a hedging portfolio against
stochastic interest rate and a hedging portfolio against stochastic volatility. Risk averse
investor hedges interest rate risk by investing in bonds only. The size of this portfolio
depends on the stochastic duration of the bond and the horizon investment, in addition to the
degree of risk aversion. Investors also hedge stochastic volatility risk by investing in the
stock index only, the size of this portfolio depends on the covariance between the stock
returns and the volatility of stock returns, in addition to the investment time horizon and
degree of risk aversion. The non-affine volatility structure seems to play very important role
in hedging against volatility, through the correlation coefficient between shocks in stock
returns and volatility shocks. This correlation increases with the level of current volatility



causing the demand for hedging allocation to increase. The general result manifests clearly
the effect of leverage on the hedging portfolio, where the negative correlation coefficient
(negative skewness) increases at high levels of volatility inducing higher demand for hedging
portfolio.

In the empirical part, the model is calibrated in two steps. In the first step the
parameters of the model are estimated using monthly US data from April 1953 to
September 2001 by means of the Spectral GMM techniques of Chacko and Viceira (2003).
In the second step, the estimated parameters from the first step are used to calibrate the
optimal portfolio choice for three different risk-recipients investors, with different
investment horizons, aiming at mimicking the observed financial planners’ advice. The
calibration implemented by minimizing the sum of squared deviations between the
theoretical and observed asset allocation advice across the different risk attitudes, different
investment horizon investors. With this calibration, the model could provide simultaneous
resolution for both the Samuelson and the asset allocation puzzle.

The literature that examines optimal asset allocation in dynamic setting is numerous.
Campbell and Viceira (2002) survey most of the work that has been done in stochastic
environment with no jump diffusion®. Studies that analyze asset allocation in event risk are
limited, Liu, Longstaff, and Pan (2003) is the most significant paper, especially in analyzing
the effect of double jumps in stock returns and stochastic volatility on asset allocation.®

In spite of Liu, Longstaff, and Pan (2003) and the overwhelming literature in asset
allocation in stochastic environment, this paper is different and contributes to the literature in
a very unique way. First by approximately deriving a close form solution for a price of a bond
under a mixed non-affine CEV model with jumps that captures the behavior of higher
moments and the high volatility of bond prices. Such models have been used extensively in
estimation of the term structure of interest rate but not in pricing interest rate contingent
derivatives. Secondly, by solving explicitly for the optimal portfolio mix of bonds and stocks
under the assumption of double jump in asset returns and interest rates, taking into account
two important aspects of the volatility of the stochastic variable in the presence of jumps. In
one hand, the model captures the leverage effect and shows its impact on the hedging
portfolio. On the other hand, it accounts for the fast updating in volatility and interest rate
during market crashes by using a non-affine structure for both stochastic volatility interest
rate processes and test its implication on optimal asset allocation strategies. Although, Liu,
Longstaff, and Pan (2003) is not a special case of this model, the model can be extended as
shown later in the paper to include jumps in volatility. In general, this paper fit into filling the
gap of testing the corrective procedure to improve the stochastic volatility models
performance [suggested by Mantegna and Stanley (1999) and Jones (2003b)] in asset pricing
and asset allocation framework.

The paper is organized as follows, section 2 presents the formal model and the
solution to the intertemporal portfolio problem. In section 3 we estimate capital market
parameters and, subsequently, calibrate the model to observed asset allocation advice.
Section 4 concludes.

® Many papers have been published after their book, of which Bajeux-Besanainou, Jordan, and Portait
(2002a&b), Liu (2001), and Munk et al (2004) and many others.

® Wu (2003) studies optimal portfolio choice in a stock return jump model, but he does not provide analytical
solution.



2. Model Specifications

2.1 The Investment Opportunity Set Dynamics

The stock index is assumed to evolve according to the following set of mixed
stochastic volatility stochastic interest rates jump diffusion differential equations

Where 7, is the short nominal interest rate, u,is the time varying expected excess

ds,

= (r, + g )dt + \[v,dZ s + 7o \[r,dZ, + J 4, dN, (4,) = J5,dN , (A,) (1)

t
dv, =k, (0, -v,)dt + o ,v,dZ, )
drt = Kr (er - rt)dt + Gr}?%dzr + deNu (//i’u) - erde (j“d) (3)

return from investing in stocks, and v, is the time varying stock index volatility.
Z,Z ,and Z, are Wiener processes. We assume that there is no correlation between the
Brownian motions Z; and Z or Z ,andZ . The instantaneous correlation between
Zgand Z, is py, .

Within this specification of stock returns, the shock to stock returns is a sum of two
shocks, \/ZdZS and myr\/;dZ, . Accordingly, the volatility of stock returns ¥,

is (v, + 7% %r,) and it depends on the v, as well as the short rates®.’ The covariance between
S+l
2

stock returns’ shock and volatility shocks is time varying and given by ¥V, =a,v, 1p5v . The
covariance between stock returns’ shock and the short rates shocks is also time varying and

w+l

givenby V,, =7mo’r? .

Jo S d 0,y >0, are stochastic jump magnitudes. dN,(4,)and dN ,(1,) defines

ru !

an exponential upward and downward jump processes with jump frequencies or jump
intensities A,,4, respectively. N and N, are the exponential counting processes, and they

u?

represent the number of upward jumps and downward jumps up to time ¢, thus dN,and dN,

represent incremental changes in N during an infinitesimal time period of length dr.
A,, A, are positive constants:

u!

AN = {l with probability \dt )

" |0 with probability (1-\,)dt

" Besanainou, Jordan, and Portait (2003a&b) and Liu (2001) use such specification in dynamic portfolio
selection problems.

8 Campbell (1987), Breen, Glosten and Jagannathan (1989), Shanken (1990), Glosten, Jagannathan and Runkle
(1993) and Scruggs (1998) report the some empirical evidence that conditional volatility of stock returns
depends on the short rates.

® Here there is a distinction in notation, v, is used for the volatility process, Vs is the stock return volatility that
depends on both v, and r;.



We assume that jump magnitudes are determined by draws from an exponential
distribution with positive means 7, ,7, :

() %exp[— "—j ©

1 l

Where 7 is u, d. The upward and downward jumps are asymmetric. The jump size, J,, does
not depend on dt, instead, the probabilities (4,,4,) associated with the outcome are
functions of dt. So as At — dt, the jump size stays the same, but the jump probability
decreases. This is a critical difference from the Brownian motions Z,,Z ,and Z, where the

increments become smaller as Az — dr. Chacko and Das (2002) and Chacko and Viceira
(2003) differentiate between the upside and downside jumps.

The short rates and the volatility processes are described by a mean reverting non-
affine  stochastic ~ processes. x,,0,x,,0 0, 7,0 0andy are  constants.

x, and x, represent the speed of adjustments for the volatility and short rates processes.
6, and @ are the long term means for volatility and short rates, and o, and o, are the
instantaneous volatility for the short rates and the volatility. When the constants o and
take values greater than 1 (0 >1and i >1) the interest rates and the stochastic volatility are
described as non-affine stochastic processes. Restricting ¢ and iy to equal one results in the

affine square root stochastic volatility process of Heston (1993) and the affine CIR interest
rate process of Cox, Ingersoll and Ross (1985). The necessity of using the non-affine
structure of stochastic volatility with jumps comes form Mantegna and Stanley (1999), and
Jones (2003a) proposition regarding rapid volatility dynamics in the presence of jumps and
to capture for the leverage effect. The use on the non-affine diffusion term of interest rate
stems from Mantegna and Das (2002) and Jones (2003b) and Johannes (2004) suggestion of
fast and persistent volatility of the short rates and the behavior of higher moments with the
presence of jumps as recent empirical studies show.

Risks from different sources are priced in the stock excess return. The risk premium
includes the prices of shocks and jumps risks:

Us =Agv, + /Irﬁzo_zrz + A5, = Aallsa (6)
Where A, and A, are the prices of the volatility and interest rates risks respectively, thus the
instantaneous Sharp ratio (ISR) is defined by:

SR = Hs _ Agv, +ﬂ“r7[202”t + A5 = Aallsa
VVS \j(vt—|—72'20'r2]/'t)

Equation (1) shows that the trajectories of the stock returns and the short rates consist
of continuous path broken by occasional jumps with jump arrival intensities of A, and 4,. In
fact, the stochastic differential equations in (1) (even if we disregard stochastic volatility) is
a mixed of normal process, Geometric Brownian Motion, (GBM), and Poisson-Exponential
process in the jump part. This mixture result in an unknown conditional density function for

(7)



St and r; Additionally, with discretely sample data, it is difficult to know which returns have
discontinuous components in it and which returns do not. The matter becomes more
ambiguous when we add stochastic volatility, since it is unobservable stochastic variable,
and also the density function is unknown (even with jumps exclusion).

Returns discontinuities typically exhibit themselves in discretely sampled data in the form
of excess kurtosis'®. So, one part of kurtosis in stock index returns can be captured by jump
diffusions. The other part of kurtosis is captured by the difference between « ,o, . If the

instantaneous volatility o is large more volatile variance will lead to thick tails in the stock

return distribution. Thus a mixed non-affine stochastic volatility jump diffusion process
allows for complete kurtosis in stock returns*.

Additionally, the dynamics in volatility are non-linear of the squared volatility, which
makes volatility to updates faster with the presence of thick tails as Mantegna and Stanley
(1999) suggest. The non-affine stochastic process also allows for leverage effect as Jones
(2003) empirically concluded. Same analysis is applicable on the short rates.

Accordingly, the variation in the investment opportunity set is induced by stochastic
variation of the short-term interest rate, jumps in the short term interest rates, stochastic
variation of the expected excess return the stochastic conditional variance of stock returns
and jumps probabilities in stock returns.

2.2 Bond Pricing

Proposition 1: Under the non-affine term structure of interest rates specified in (3),
the approximate price of a zero-coupon bond with time to maturity z is given by

B(r,t;7) = e €0r (8)
Where the values of C(z)and A(z) are given in the appendix, and the price of this bond
evolves according to the following stochastic differential equation

T+ ADATY + 2, AN, = 2 A, i+ AD, 12, o

+7,A@)dN, (4,) ~J,, A(2)dN,, (4,)

Proof: See Appendix.

oB(r,7) 1
or,

respect to the short interest rate; this elasticity is usually referred to as the stochastic duration
of the interest rate contingent claim [Ingersoll, Skeldon and Weil (1978) and Cox, Ingersoll
and Ross (1979)]. We assume that the bond available for the investor has a constant duration
D. This can be thought of as reflecting the duration of the aggregate portfolio of bonds

Notice here that A(z) = D(r,7) =— is the elasticity of the bond price with

B(r,7)

19 The kurtosis for those distributions is 3 +% .

1 Bollerlev (1987) suggest that kurtosis in financial data is larger than what stochastic volatility produce.
Andersen, Benzoni, and Lund (2002) reject the square root model of stochastic volatility for lack of kurtosis.
Lewis (2001) considers that a process that combines stochastic volatility and jumps would produce enough
tail thickness as financial data display.



outstanding, or a bond index, where bonds that expire are always substituted with new longer
term bonds. Lets definec, =o,D, n,, =n.,D ,nz =n,D, Jz =J,,D,J,, =J,,Dand

Ay =A.D 2 To write the bond price dynamics in the following form:

dB,

— (r, + p1y)dt + G 17 dZ, + J ydN, (A,) = J yydN, (2,) (10)

t

Where p, = A,rY + 4,1, — A,n5, - AlSo, note that the short interest rate and the return on
the bonds are perfectly negatively correlated and with covariance

rateV, =-o,0,r" = —(ijVBz and that B <0,and B >0.
D 04, 04,

The comparative static means that upward jump frequencies of the short rate causes the
bond price to fall, while the opposite happens with increasing the downward jump
frequencies. Intuitively, as the upward jump frequency increases, the possibility of higher
future rate increases and since the bond price is a discounted value of these rates the bond
price decreases.

The parameter estimates of the CEV Jump diffusion model in equation (3) reported in
Table 2 shows that the estimated long-term mean of the nominal interest rate is 3.42%, and
the volatility of the volatility of interest rate is 2.44%. If you assume of the current level of
the interest rate equals the long-term mean. Then with the estimated value of y = 2.652 we

calculate the volatility of the interest rate to be 0.04 %. According to non-affine structure of
the volatility of the interest rate increases as the level of the interest rate increases. The
duration on a pure discount bond with 3 years to maturity D(0,3) is A(3) = 2.977 years. Its

volatility (V) assuming the current level of the interest rate equal its long means would be

D(0,3)x o, x r% = 0.08%, and this volatility increases at higher level of the interest rate.

2.3 Preferences

We consider the investment problem of an investor who has access to the capital
market and wants to transfer current wealth W, into a future terminal wealth W7 at a specific
investment horizon. We consider the basic asset allocation problem of how much to invest in
a money market bank account (cash), nominal zero coupon bonds, and stocks. Here we
assume that nominal pure discount bonds differ from cash in that they provide capital gains
beside the interest. It is held also as a part of the hedging portfolio not only the speculation
portfolio. The duration of the bond reflects the stochastic duration of the portfolio. Investors
who hold bonds in their portfolio keep a certain portion of their portfolio in the form of
bonds, whenever a bond expires it is replaced by a longer maturity bond.

v

V2 - -
12 According to the specification in (1), the risk premium on the interest rates is L, multiply this by the

r

v
volatility of the bond & .2p, then 2,=4 D

10



Accordingly, the investor is looking to choose a dynamic portfolio strategy to
maximize the expected utility of terminal wealth at the horizon 7. The utility function
displays constant relative risk aversion (CRRA) utility function of the form:

w7
uW)=41-y
— 0, ifw<0

, ifw>0 1)

Where » >0is the risk aversion parameter. When » =0, we get the log utility
function. The second part of the utility function imposes a condition of positive wealth at
each time ¢ from ¢, <t < T . At each period between [,, 7], the investor chooses the optimal

allocation of stocks, bonds and cash in his portfolio, to invest «; in stocks, «, in the zero
coupon bond and(l-a, —a,) in cash to maximize the expected utility of his terminal
wealth W+ with respect to the fraction of wealth invested in risky assets

Max Elu(W,)] (12)

where the wealth process satisfying the self-financing condition

dw, = pyWdt +V,, W, dZ,, + WJ ,dN  (4,) =W ydN, (2,) (13)
Where
Wy =r+a'p, V:=aXa, J,, =aJ, J,, =07,

a:|:aS:|’ u:|:/’ls:|1 Ju :|:JS1,¢j|, Jd :|:Jde|
Ap Hpg J b J ba

. . : . Ve V. v
and X is the variance covariance matrix ={ S %1 where Vy, =DV, = 0,0,
BS B

2.4 The Optimal Asset Allocation Strategy

Now define the value function or indirect utility function U(W,,r,,v,7)for an investor

with z periods investment horizon. The value function must satisfy the boundary condition
UW,r,v,0)=u(W). The Hamlton-Jacobian-Bellmen principle assumes that the value

function at the maximum is martingale.

Max E[dU]=0 (14)

11



1
Max0 = {u, WU, +x,(0. — 1)U, +x,(6, —v,)U, —U. +EVV§W2UWW

rv rv

1 1 ;
+ EO-VZ”;WUW + Eo-vzvthvv + VWVWUWI‘ + VWVWUWV + V U (15)

+ LE[UW +Wa'd 1. +J, v, 0)=UW,r,v,7)]

-LEUW -wa'd 1= J, v, 1) =UW,1,,v,7)] }

v, v, 0
Where 7, =a|'> |, 7, =a| 5 |=L2a] #|=Lx
0 v,| D |v,] D1

The partial differential equation (PDE) in (15) is highly non-linear in its arguments.
To get an explicit solution for the optimal portfolio strategy, we have to solve PDE explicitly.
The solution for the PDE in (15) is the value function or the indirect utility function
UuWw,,r,,v,r), with a terminal condition U(W,,r,,v,T —=T) =u(W, ). To solve for the optimal
portfolio selection, we first conjecture a solution for the value function that satisfy the
terminal condition. Then substitute this conjecture and its derivatives in the PDE in (15).
After that, we take the first order condition of the maximization with respect to the fraction
of the wealth invested in the stock index and bonds (a). In the last stage, we verify that our
conjecture is the correct form by substituting back the optimal portfolio policies into the PDE
to solve explicitly for the parameters of the conjecture that satisfies the PDE above.

The first step to solve this equation, is to conjecture a solution in the form

W177 1-y
S (16)
1-y

and f(r,,v,,7) takes the form illustrated in (16) below:
SW,rv,7)= Exp[a(r) +b(7)v+ c(r)r] a7

Where a(0) = b(0) = ¢(0) =0, which satisfy the boundary condition for the
value function U (W, r,v,0) =u(W) . Now substitute the conjecture in the PDE in (15)
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K,
y@=7)

KV

Max0 = {i(r, + a'u)+ @ —r)c(r)+
¢ Y

1 {da(r) _db(z) N dc(r)} -i[a'Zu]
y(L—y)| dr dt dr | 2

o r’c’(r) + o v'b* (1)

1
+bﬂ—ﬂ ' 2y(1-7)

N (L-y)b(z) 'V, ]+ (L—y)e(z) 'V, ]
Y Y

s 2, E| @ am, Y gt ] ]

-n@EHa—w%fﬁe““*”ﬂ—ﬂ}

yd=7)

(6, —v,)b()

(18)

Lets take the terms (1+a'J, ) "and (1—a'J, ) in the last two terms in the right hand
side of (18). We know that (1+a'J, )} = L+ aJ,, +a,J,,) 7 and

(-ad,)7” =(-aJy —a,J,,)"" . Assume that

MY =@1+aJ, )7

Mj_y = (l —a'J, )1_7

(19)

(20)

Assume also that at a certain values of «g,J,, o, and J, there are m,  and

my .

m, >1 and m, <1can be thought as previous values of A, and M, that are

associated with a previous level of optimal asset of allocation in the stock index and
the zero coupon bond during previous up and down jump experiences.

To linearize M7 and M7 we apply some kind of perturbation methods of
Kevorkian and Cole (1981). This approximation is basically a Taylor series expansion around

m, and m, . as follows:
M7~ + (L= y)m M,
M7 =7 + (1= p)m L+a'd,)
and

M7 = m, "+ (L=y)m M,
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(22)

(23)



MY = ym,"7 + (1= y)m” 1+ a'T,) (24)

This approximation becomes crucial in deriving the optimal portfolio strategy,
because it allows us to express the optimal allocation of bond and stocks explicitly with the
state variables and the model parameters. Without such approximation, the optimal strategy
will be a function of the optimal strategy, and the parameters of the value function will be
also functions of the optimal allocation strategy. Liu, Longstaff, and Pan (2003) do not
utilize such kind of approximation, so the optimal allocation of risky assets and the
parameters of the value function they got depend directly on the optimal asset allocation, see
their equations (17), (18), (21) and (28).

Accordingly, we can write the last two terms in (18) in the following way:

1 1-y — ’ ] ﬂ”
m,  +@0A-y)m,”(l+am,) u —iu}—
[7(1— 7) [ 1-[1-y)e()n,
1 1-y - ' ] /1d
m, " +L—y)m,”(1+a'n,) -1
L/(l—?/)[ ’ ’ e @-p)e@n,
. Nsi . A-2)e(e), 1
Where E[]i]:ni, n =|: :| and i =u,d . And E[e ]= and
7731’ l_ (1_ 7)0(7)77114 i
E[e(lfﬂ)c(rw,d] 3 1

1+ ()@

The first order condition of equation (18) with respect to a results in the solution for
the optimal asset allocation for an investor maximizes CRRA utility function in wealth,
subject to the wealth dynamics shown in equation (13).

Proposition 2: The optimal portfolio weights for investor with CRRA utility

function who invest in stock index, zero coupon bond and cash for z periods investment
horizon and subject to the constraint in (13) is:

0 1
a=SE "t g, (oM, — g, (0, ]—( —EJ{ (@j{ } + Zlb(r)Vs{ } } (25)
y y D )1 0

The residual o, =1-1'a =1-¢«, —a, is invested in the cash or bank account.

v 4
A, vand q,(y,7) A :
1_ (1_ )/)C(T)nru 1+ (1_ 7)0(2-)77”1

q,(7,7) =

Where b(r) and c¢(r) are the solutions to the following Riccati ordinary differential
equations (Riccati ODE’s):

db(7)

+1,+1b(z) + %lzbz(r) =0 (26)
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de(r)
dr

+ hy + he(7) + %hzcz(r) =0 (27)

Where 1,1, 1,, hy, b, h,, c(),and b(z) are provided in the appendix.

Proof, see appendix.

Equation (25) shows that the optimal portfolio weights for CRRA investors are linear
combinations of a speculative portfolio (the first 3 terms of equation 25) and a hedge
portfolio against changes in short rates and volatility. The allocation in the speculative

portfolio decreases (increases) with the risk aversion (tolerance) parameter y ( % j whereas

the allocation in the hedge portfolio increases (decreases) with risk aversion (tolerance)

parameter 7/( % j In particular, for investors with the same investment horizon z the

optimal portfolios are linear combinations of the speculative portfolio and a single hedge
portfolio; the relative risk tolerance 1/y, represents the weights on the two relevant

portfolios.

The speculative portfolio includes the usual speculative portfolio (the first term) that
is optimal for an investor with short horizon or log utility (myopic investor) and a speculative
allocation related to the jump risk. The myopic portfolio is a mixed of bonds and stocks. The
optimal mixture of bonds and stocks in this portfolio does not depend on risk aversion
parameter or investment horizon, it depends entirely on the expected returns and variances of
bonds and stock. If we assume pure diffusion process of asset returns (disregard all other
terms in equation (25) and look at the first term only), we find that investor with high risk
aversion parameter would invest less in this portfolio and more in cash and visa versa. The
risk aversion parameter has no impact on the components of the myopic portfolio. This is
consistent with the strong 2-fund separation theorem of Cass and Stiglitiz (1970).

Before analyzing the inclusion of jumps, lets see how the values ofg, (y,7) and
q,(y,7) by the constant risk aversion parameter and investment horizon.
Differentiating g, (7,7) and ¢,(y,7) with respect to yandz results in the following
comparative static results:

aqu (7/! T) < O , aqu (7/' T) < 0 (28)
V4 T

aqd (y’ 7’-) > 0 ) aqd (7' T) > 0 (29)
V4 T

Equation (25) indicates that risk averse investors (regardless of the degree of their risk
tolerance and their investment horizon) will increase their speculative allocation when the
market explodes (upward jump) and decrease their speculative allocation when the market
crashes (downward jump). However, the size of the increase and decrease in the speculative
portfolio depends basically on the degree of risk aversion and investment horizon.
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Comparative static implies generally that short-term investors (regardless of the
degree of their risk aversion) will increase their speculative allocation by substantial amount
when there is upward jumps (g,(y,7)n,will be large) and decrease their speculative

allocation by small amount when there is downward jumps (g, (7,7) n, will be small). Long-
term investors will behave in the opposite way, they will increase their speculative allocation

by small amount during upward jumps fearing a future downward jump and reduce their
speculative portfolio by significant amount during downward jumps.

It implies also that aggressive investor (investor with lowy) will increase his
speculative portfolio by significant amount during upward jumps and reduce his speculative
portfolio by small amount when there is downward jump. For this investor, the positive
marginal utility from gain is higher than the negative marginal utility from loss. On the other
hand that conservative investor (investor with high ) will increase his speculative portfolio
by small amount during upward jumps and reduce his speculative portfolio by significant
amount when there is downward jump. For this investor, the negative marginal utility from
losses is higher than the positive marginal utility from gains.

Accordingly, if there is a positive jump in interest rate or stock return index or both of
them (4, > 0,77, >0,and n, > 0), short-term aggressive investor (investor with low y and 7)
would utilize this upward jumps by significantly increase his speculative portfolio allocation
(g, (y,7) n, will be large). While the same investor will reduce his speculative portfolio by a
small amount when there is down ward jump. No surprise he is aggressive investor looking
for fast speculative profits and fast gain affects his utility more than loss does. On the other
hand long term conservative investor (investor with high yandz) would increase his
speculative portfolio allocation with small amount (g,(y,7) n, will be small) fearing from

future downward jumps. Of course the same investor will reduce his speculative portfolio
substantially when there is down ward jump.

The changes in the speculative portfolio allocation depend on a previous allocation
level during previous upward and downward jump. ¢,(7,7) and g,(y,z) does not imply any
changes in the composition of the myopic portfolio based on risk aversion or investment
horizon. As long as the probability of upward and downward jump arrivals in stock returns or
short rates is the same, the composition of the speculative portfolios will not change. What
might affect the composition is the expected value of the jump sizes (the n vectors).
Generally, we can consider ¢,(y,7) as a hedge portfolio against downward jumps, since the
comparative static shows that this factor is negatively related to risk aversion parameter y .

Conservative investors hold more of this portfolio whereas aggressive investors hold less of
it.

Liu, Logstaff and Pan (2003) derive optimal asset allocation under double jump
diffusion process in both stock prices and volatility’®>. The optimal asset allocation they
derived is non-linear in the optimal asset allocation itself and the parameter ¢(z) , (B in their

B Including upward and downward jump in volatility as in Liu, Logstaff and Pan (2003)

Am 7 ldm;}/

makes ¢ (y.r)= u_u andq , (7,7)
e (@ by ) L) (g by )
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paper), where B itself also depends on the optimal asset allocation. To solve for the optimal
allocation in their model, you need to use some kind of numerical finite difference
techniques. Their model does not specify different jump intensities for upward and downward
jumps thus jumps in their model appear in the speculative portfolio, with no hedging
components.

The hedging portfolio in equation (25) (the last two terms) describes how the investor
optimally hedges changes in the opportunity set. The first term in the hedging portfolio
describes the hedge against the nominal interest rate and it summarizes the investor’s attitude
towards changes in the interest rate. The optimal hedge against changes in the interest rate is
obtained by investing entirely in the bond. Hedging against stock return volatility dynamics is
described by the last term in equation (25). The optimal hedge against volatility dynamics is
obtained by entirely investing in the stock index.

As shown earlier, the size of the hedging portfolio depends on the relative risk
aversion parameter. Aggressive investors invest less in the hedging portfolio and more in the
speculative portfolio, whereas conservative investors hold more from the hedging portfolio
and less from the speculative portfolio. Hedging portfolio depends also on the investment
time horizon through the parameters ¢(z) and 4(z) . Hedging against interest rate changes

depends crucially on the duration of the zero coupon bond, whereas hedging against the stock
return volatility dynamics depends on the covariance between stock returns and the volatility
of stock returns.

Brennan and Xia (2000), Bajeux-Bensnainou, Jordan and Protait (2002a&b) Munk,
Sarensen, and Vinther (2004) got a hedging term against interest rate changes in a stocks-
bonds portfolio mix with Vasicek mean reverting process that have the same impact on the
allocation as the one derived in equation (25). Chacko and Viceira (2002) and longstaff
(2001) study hedging against stochastic volatility. Liu (2001) derives an optimal portfolio
hedging against short rates dynamic and stochastic volatility in square root process for
volatility and CIR model of the short rates, however, his model does not show that the
demand on those hedging portfolios increase with risk aversion parameter.

The optimal asset allocation strategy in equation (25) shows explicitly that the bond-
stocks- cash mix can be changed among investors with respect to their risk aversion and their
investment horizon. Investors may reallocate their speculation portfolio if they expect an up
or down jump in the stock returns or interest rate or both of them and the additional positive
or negative holdings depends on the risk aversion parameter and the investment horizon
length in the way explained above. Additionally, investors will hold a separate bond portfolio
and a separate stock portfolio to hedge against stochastic changes in interest rate and stock
prices respectively. The sizes of those portfolios depend on the risk aversion parameter and
the investment horizon. Accordingly, an expression as the one in (25) that consists mixed
positions in e stocks and bonds can introduce simultaneous resolution for both the Samuelson
puzzle and the asset allocation puzzle of Canner, Mankiw, and Weil (1997).

2.5 The Effect of Non-Affine Structure

Equation (25) shows that hedging against volatility dynamics depends crucially on the
covariance between the shocks in the stock index returns and the shocks in volatility. This
covariance contains the effect of the negative skewness and kurtosis that is captured totally by
ps, and o, respectively. The correlation coefficient between the shocks in stock returns and
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2

the shocks in volatility is e . The effect of non-affine structure of the stochastic
(v, +%c’r,)

volatility™* appears clearly in the correlation coefficient, which strengthen the so-called the

leverage effect. The negative correlation between stock returns and volatility increases at

higher levels of volatility.

At high levels of volatility, the non-affine structure will result in hyper increase in
volatility and hence an increase in the correlation coefficient. When volatility exceeds100
percent™, with & > 2 volatility updates faster and the correlation coefficient increases implies
more negative skewness (leverage effect) and kurtosis. On the other hand, at low level of
volatility, a value of 6 >2 makes volatility decays overtime, and the negative correlation
between stock returns and volatility decreases. Thus, the non-affine structure captures the
leverage effect of stock returns where the negative skewness of stock returns increases at
higher volatility levels and decreases at lower volatility levels as Jones (2003) suggests.

Higher volatility and correlation imply higher demand on the hedging portfolio of
volatility dynamics, and lower volatility and hence lower correlation coefficient imply lower
demand on the volatility-hedging portfolio. Thus, the demand on the volatility-hedging
portfolio depends on the volatility state variables, which means that investors time the market
when they constitute their hedging portfolios. This provides significant difference from the
square root volatility models where the correlation coefficient is not time varying and the
demand on the volatility hedging portfolio does not depend on the state variable, so there is
no market timing in stochastic volatility.

The non-affine structure of the short rates affects both the optimal demands for
hedging against stochastic volatility and stochastic interest rate. It affect the demand for
stochastic volatility hedging portfolio through the inverse of the variance covariance matrix,
and it affects the demand on the interest rate hedging portfolio through the duration of the
bond.

3. Model Estimations and Calibrations

In the following three subsections we will first introduce the estimation technique
spectral GMM of Chacko and Viceira (2003a) and Singleton (2001). Then we are going to
calibrate the asset prices and volatility. parameters of the capital market model. In the third
section, we use these parameters in a calibration exercise where the subjective risk aversion
parameter and time horizon parameter are fitted to match observed asset allocation advice for
different investor groups

3.1 Model Estimation: Spectral GMM

The paper adopts the spectral GMM approach to estimate the parameters of the
processes in the model Pennacchi (1991), Campbell and Viceira (2001) and Brennan and Xia
(2002) have used Kalman filtering in contexts similar to this paper. Chacko and Viceira
(2003a&b) use the spectral GMM in stochastic volatility context. One advantage of the

1 The inverse of the variance covariance matrix X" does not depend on & the power of volatility.

5 VIX index of the S&P 500 stock index option implied volatility increased by 313 percent on October 19,
1987, 53 percent on October 27, 1997, and 28 percent on August 27, 1998.
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spectral GMM over the Kalman filtering is that the spectral GMM does not require the
discretization of the stochastic process. It only requires knowledge of its conditional
characteristic function. Once we know this function, we can integrate the stochastic interest
rate and inflation out and obtain the characteristic function of next period's stock price and
commodity price level conditional only on the prior period's prices. Chacko and Viceira
(2003a) call this estimation method Spectral GMM because we can use generalized method
of moments (GMM) to estimate the parameters of the model directly off this conditional
characteristic function.

To calculate the conditional characteristic function, we have to transform the process
to an exponential affine process as in Chacko and Das (2002). We transform the stock price
process into a form of the log stock price, and then we apply the following steps:

Deriving the ccf will be implemented according to the following steps®®:

1. Deriving the Kolomogorov Backward Equation (KBE) or Fokker-Plank Forward
Equation (F-PFE), two names for same equation. The KBE or the F-PFE is a
partial differential equation with a known solution form. The conditional
characteristic function is the solution for that equation. And this whole
procedure is known as Feynman-Kac Formula.

2. To solve KBE we conjecture a solution for the characteristic function and
substitute this conjecture into the KBE.

3. When substituting the conjecture into the KBE, we get two ordinary differential
equations (ODE) of the form of Raccati equations.

4. Solving those two Raccati equations gives the parameters of the characteristic
function.

3.2 Estimating the Parameters of the Processes

The system is estimated using monthly US data with almost 50 years period from
April 1953 until December 2003. Data on seven constant maturity yields are used; the times
to maturities are 3 months, 1-year, 2 years, 3 years, 5 years, 10 years, and 20 years.
Unavailable yields are calculated using the simple bootstrap method. Cumulative dividend
stock returns data available in Robert Shiller’s web site are used for the purpose of estimating
the stock returns process. Table 1 shows the data used and the sources of these data.

Table 2 shows the estimation of the parameter of the investment opportunity set. The most
important thing in this estimation is the values of the exponents & and y . w is significantly
different from 1 but ¢ is not significantly distinguishable from 1. The correlation
coefficient estimate pg, = - 0.31 which implies the negative skewness of stock returns. At a

current level of volatility equals the long term mean of volatility the covariance between the
stock returns and the volatility equals —20%. Chacko and Viciera (2003) report same results
for the stock return dynamics with non-affine stochastic volatility. Bond price parameters are
discussed earlier in section 2.2, Munk et al (2004), and Campbell and Viceira

16 Chacko and Viceira (2003a) has the full description. The characteristic function derivations for the processes
used in this paper are available by the author.
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3.3 Calibration to The Professional Financial Planners’ Advice

In this part, we follow Munk et al, (2004) exercise in trying to match the financial
planners’ advice. However, the matching data here is constructed in different way.

Table 3 tabulates the asset allocation recommendations as considered the match data.
These recommendations are generated from the advice of the four financial planners and their
three classic portfolios and rank them by their market risk: low risk, medium risk, and high
risk. These portfolios are tabulated in Canner, Mankiw and Weil (1997) as for "conservative,"
"moderate,” and "aggressive" investors. We construct those portfolios in a way that the most
conservative advice is assigned to the short horizon conservative investor, and the least
conservative advice is assigned to the long horizon conservative investor. On the other hand,
the most aggressive advice is assigned to the long run aggressive investor, and the least
aggressive advice is assigned to the short-term aggressive investor. So, the short run horizon
takes the most conservative or the least aggressive of all advices, and the long run horizon
takes the least conservative or the most aggressive advices. The medium horizon takes the
medium of the all advices.

The recommendations in Table 3 are in accordance with the popular advice that
investors with a long horizon should invest a higher fraction of wealth in stocks. Also, the
investment recommendations are in accordance with the pattern pointed out by Canner,
Mankiw and Weil (1997) and, in fact, for any investment horizon the bond to stock ratio is
increasing with risk aversion.

We calibrate parameters so as to minimize the sum of squared deviations between the
asset allocation recommendations in Table 3 and the optimal asset allocations in the
economic modeling framework in section 2. The summation of squared deviations that will
be minimized is taken over all portfolio weights for the three horizons (short, medium, long),
the three degrees of risk aversion (conservative, moderate, aggressive), as well as the
allocations into stocks, bonds, and cash. This makes a total of 27 (= 3 x 3 x 3) squared
deviations in the summation.

In calibrating the model, we vary three risk aversion parameters: yeon > Yimod™ Yage > 0.
Likewise, we vary three investment horizon parameters: 0 < Hyporr < Hyea < Hiong < 35 Yyears.
These parameters are meant to represent the relative risk aversion parameters of
"conservative," "moderate," and "aggressive" investors as well as the investment horizon of
investors with short, medium, and long horizons, respectively.

Furthermore, we allow investors with different investment horizons to use bonds that
differ in duration. The individual investor can thus invest in cash, stocks and a bond with a
duration that depends on the investment horizon. Without loss of generality the bond can be
thought of as a zero coupon bond and when we refer to the duration of the bond in the
following, we are in fact referring to the time to maturity on the relevant zero coupon bond.
This duration concept is known as the stochastic duration as shown by Ingersoll, Skeldon
and Weil (1978) and Cox, Ingersoll and Ross (1979). We calibrate the stochastic durations
as part of the problem and we impose the intuitive restriction that investors with longer
investment horizons should not use shorter duration bonds and the restriction that the
duration on the bond is between 5 years and 15 years so that it could represent a realistic
aggregate bond index; i.e. in the calibration we have the restriction:
5<D <D,,<D <15.

short — short —
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We perform one calibration by varying only the risk attitude parameters, investment
horizons, and relevant durations subject to the above restrictions. The point estimates of the
asset price and interest rate in Table 2 are applied in generating the optimal theoretical asset
allocations as we derived in equation (25).

It can be observed that the calibrated model asset allocation in Table 4 conforms to
the advice that longer term investors should invest a higher fraction of wealth in stocks. It
confirms also the advice that aggressive investors should allocate more stocks in their
portfolios as compared with bonds. The trend in table 4 is quite obvious. The short horizon-
conservative investors allocate 1.125 % in bonds relative to stocks, which is a little less than
the financial planner advice for the short-term — conservative investors. However, our model
could not mimic exactly the advice for the long-term- aggressive investor. According to our
calibrations, this investor’s bonds to stocks ratio is 6%, where it is zero for the match data.
Generally speaking, the model and the estimates could mimic closely the financial planner
advice.

The representative investment horizons calibrated in Table 4 - B seems to be
reasonable. Specifically, investor with a short investment horizon has an investment horizon
of 5.36 years while a long-term investor acts so as to maximize utility of wealth at a thirty
five years horizon. On the other hand, the calibrated relative risk aversion parameters are
seemed to be high. For example, an "aggressive"” investor has a relative risk tolerance of 0.62
(= 1/1.62). Hence, this investor will only allocate 62% of wealth to the speculative portfolio
while the remaining 38% is allocated to the hedge portfolio. "Conservative" investors on the
other hand only allocate 10% (= 1/10.26) of wealth to the speculative portfolio while 90% are
invested in a hedge portfolio.

4. Conclusion

The paper analyzes the optimal portfolio mix of stocks, bonds and cash when market
crashes (downward jumps) and market explosives (upward jumps) are possible. In analyzing
that, the paper takes into account the hyper updating in volatility associated with such events
in interest rates and stock index returns as well as the leverage effect. Jumps and stochastic
volatility both allow for tail thickness in the stock return distribution. Mantegna and Stanley
(1999) suggest that tail thickness is always associated with fast volatility updating.
Additionally, at high level of volatility the negative correlation between the shocks in stock
returns and shocks in volatility increases, and that strengthening the leverage effect as Jones
(2003a) suggests. Short rates also displays high volatility and excess skewness and kurtosis
that can be captured by the mixed CEV and jump model as suggested by Das (2002) and
Johannes (2004).

The paper utilizes a perturbation approximation method used Kevorkian and Cole
(1981) to derive closed form pricing formula for a zero coupon bond pricing. The same
approximation is used to derive explicitly linear optimal portfolio strategy for stocks and
bonds. Based on such approximation methods, we can price all other derivative securities
contingent on this bond like the European option, forwards and futures, swaps, caps, floors
and European swaptions. By the means of those approximation techniques, we can price
explicitly different stock contingent securities without going for numerical technigues.
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Results show that the optimal asset allocation is a linear combination of a speculative
portfolio and hedging portfolio, weighted by the risk tolerance parameter (defined as a
reciprocal of the relative risk aversion parameter). The demand of the speculative portfolio
increases with the degree of risk tolerance, whereas the demand for the hedging portfolio
decreases with risk tolerance. Although results indicate that investors are increasing or
decreasing their speculative portfolio regarding to their expectation about upward and
downward jumps, but it shows also that investors would increase their holdings during
upward jumps to hedge the effect of downward jumps. The increase in allocation (during
upward jumps) and the decrease in allocation (during downward jumps) depend crucially on
the investment horizon and the risk aversion parameter.

The hedging portfolio on the other hand, consists of a hedging portfolio against
stochastic interest rate and a hedging portfolio against stochastic volatility. Risk averse
investor hedges interest rate risk by investing in bonds only. The size of this portfolio
depends on the stochastic duration of the bond and the horizon investment, in addition to the
degree of risk aversion. Investors also hedge stochastic volatility risk by investing in the
stock index only, the size of this portfolio depends on the covariance between the stock
returns and the volatility of stock returns, in addition to the investment time horizon and
degree of risk aversion. The non-affine volatility structure plays very important role in
hedging against volatility, through the correlation coefficient between shocks in stock returns
and volatility shocks. The correlation increases with the level of current volatility causing the
demand for hedging allocation to increase. The general result indicates clearly the effect of
leverage through the hedging portfolio, where the negative correlation coefficient (negative
skewness) increases at high levels of volatility inducing higher demand for hedging portfolio.

The calibration of the model on US monthly data shows that investors with different risk
tolerance and different time horizon would allocate differently in the presence of the
jumping and stochastic investment opportunity set. Those results provide a simultaneous
resolution for both the Samuelson and the asset allocation puzzle.
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Appendix

Proof of Proposition 1: The zero coupon bond price formula:
The interest rate process under the risk neutral measure Q is

dr, =[x,0, = An, + A0, — K1, — A" ]dt +
O-rrt%leQ + deNuQ (j’u) - erdeQ (Z‘d) (Al)

Using the pricing partial differential difference equation (PDDE) for the price of the bond as
in Black and Scholes (1973), Merton (1973) Courtadon (1982), Cox, Ingersoll and Ross
(1985), Ahn and Gao (1999) and Chacko and Das (2002).

1
0 —-An +Ain,—xr—-Ar1B +—ocr’B. +B. +
[Kr r unu dﬂd Krrt r ] r Zo-rr " T (az)

+ A,E[ B(; +J,,7) - B(,, )]~ 4,E[B(, = J,,7) = B(r, 7)| = —1.B
Under the boundary condition B(#,0) =1, the solution of the PDDE above is of the form

B(r, ) = Exp[-A(7) - C(7)] (A3)
Now substituting the conjecture and its derivatives in (A2) we get:

dA(7) . dC(7)

—[x.6. —An, +A4,n, —xr,—Ar"]A(r) + %arr“’Az(r) -

dr dr
+ A,E Exp(4J,,) ~1]- 2, E[Exp(-=47,,) ~1] =,
Now, we need to linearize the term»¥
o (L-p)0 +yd 7, (A4)
1
E[ Exp(AJm)] = (AS5)
l_ A 771‘u
E[ Exp(-4J,))] = L (A6)
’ 1+ An,

A A -
Kl— TR mj—(&, ' zd)ﬂ ~[.0, = A, + A1, = 2,8 Q=)= o, + 2,67y ) 1a(e)

dA(T)r _dC(z) _
dr ° dr

0

+Jotor @)+ o107 v o) -
(A7)
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c+ad(r) + leZ (r) - dA(z) r— dC(z) =0
2 dr dr

a=a +a,r,

b=b+b,r

c=c¢teor

Where

a = [x,0, = A1, + A1, = 2.0 A=y)]

a, = —(K, + /I,ﬂ,'f’_ll//)

b= 70 (L-)

b, =00y

oo )G
1-4n, 1-4n,

c, =1

dC(7)
dr

(cl +a, A(7) + %Az (r) -

j + [cz +a,A(7) + b—ZZA2 (r) - dA(T)j =0

dr

[cl )+ 540~ di—(:)j i (Cz Fayd(e) + 2 A°(0) ——dfi(:)j -0

(A8)
(A9)

(A10)

(Al1)

(A12)

(A13)

Equation (A13) can be separated into two ordinary differential Raccati equations as follows:

a+aA(r)+ ﬁAZ(T) = dc—(T)
2 dr

¢, + a,A(7) + b—zAz(z') _d4@)
2 dr

With boundary conditions 4(0) = C(0) =0

The solution for A(z) is given directly by

A(r)=£ wu, e:i_uluzue:tzr |
bz ule 2 —uze !

Where:

u, = a, ++ja; —2b,c,
u, =a, —+ja: —2b,c,
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The solution for C(z) in (A14) is given by:

C(r) = J:(cl +aA(r)+ %blAz(r) - dljz (:) jdu (A17)

Where u here is the integral dummy. From (A13), Az(r):idA—(T)—ﬁA(r)—zi,

b, dr b, b,
Accordingly, we can rearrange the terms inside the integral and (A17) can be written as

C(r)= j{l[j—l dl;ir) + (al - bzﬁ}l(r) + (cl - blljcz ﬂdu

(A18)

Distributing the integral through out the expressions, we get:

C(7)= jZ—ldA(r) + j.(al - b;)“? jA(z‘)du + j(cl - b;)cz jdu (A19)

2 2

Since A(0) = 0, then integrating the first and the third terms:

b, ba, f bic,
C(r :E[A(T)]-{al_ b, J.([A(r)du+(cl— b, Jr (A20)
: 2 U, —u
'[A(r)du:b_ln u122' : upr |
0 2 uZ e - ul e

Where u;, and u, as defined above.

Accordingly, the solution for the ODE (14) is given by:

C(r :2’—1[A(r)]+(c1—bfjﬂ(al—blazjiln[ T ] (A21)

iz
2 2 2> )b, U, e —ue
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Table (1)

Sources of the Monthly Data Used in the Spectral GMM Estimation

The Series Dates Source

3-Month Treasury | April 1953-Dec. 1981 McCulloch (1990)
Constant Maturity Rate | Jan. 1982-Dec. 2004 Federal Reserve Board.
1-year Treasury | April 1953- Dec. 2004 | Federal Reserve Board.
Constant Maturity

2-year Treasury | April 1953-May 1976 McCulloch (1990)
Constant Maturity June 1976- Dec. 2004 Federal Reserve Board.
3-year Treasury | April 1953-Dec.2004 Federal Reserve Board.
Constant Maturity

5-year Treasury | April 1953- Dec. 2004 | Federal Reserve Board.
Constant Maturity

10-year Treasury | April 1953- Dec. 20034 | Federal Reserve Board.
Constant Maturity

20-Year Treasury | April 1953- Dec. 2004 | Federal Reserve Board.

Constant Maturity Rate

Cum Dividend Stock
Returns

April 1953- Dec. 2001

Robert Shiller’s Home
Page

Cum Dividend Stock
Returns

Jan. 2002-Dec. 2004

Economagic webpage

30




Table (2)

Estimation of the Investment Opportunity Set Parameters,
NON-AFF1V1r-J0J: non-affine one stochastic volatility- one stochastic interest
rate with jump in stock returns and jump in interest rates.

Using Spectral GMM, (April 1953-Dec.2003)

= (4 ) 02+ 7202, TN (2,) = TN ()

t

dv, =k, (60, —v,)dt + O'Vvt%dZv
drt = Kr (Hr - rt)dt + Urrt%dzr + deNu (//i’u) - erde (/?“d)

Corr(dZg;,dZ)) = p, dt

Parameter Estimate Std. Error
Uy 0.136 0.046
A, 0.021 0.013
N, 0.029 0.015
A, 1.412 0.481
Mgy 0.027 0.010
K, 0.528 0.252
0, 0.051 0.006
o, 0.433 0.108
o 1.824 0.644
O, -0.311 0.170
K, 0.0232 0.021
0. 0.0342 0.025
o, 0.024 0.009
V3 0.007 0.0058
v 2.652 0.552
., 0.008 0.013
um 0.010 0.016
A, 0.098 0.007
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Table (3)
Asset Allocation Advices Used for Calibration*

Horizon Risk Cash% Stocks% Bonds% Bonds/Stocks
Tolerance

Short Conservative | 50 20 30 1.50
Moderate 20 40 40 1.00
Aggressive | 5 65 30 0.46

Medium Conservative | 20 40 40 1.00
Moderate 10 50 40 0.80
Aggressive | 0 80 20 0.25

Long Conservative | 20 45 35 0.78
Moderate 10 60 30 0.50
Aggressive | 0 100 0 0.00

* The table constructed from the four recommendations reported by Canner, Mankiw and Weil (1997). The most
conservative advice is assigned to the short horizon conservative investor, and the least conservative advice is
assigned to the long horizon conservative investor. On the other hand, the most aggressive advice is assigned to the
long run aggressive investor, and the least aggressive advice is assigned to the short term aggressive investor. So,
the short run horizon takes the most conservative or the least aggressive of all advices, and the long run horizon
takes the least conservative or the most aggressive advices. The medium horizon takes the medium of the all
advices.
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Table (4)
Calibrated Asset Allocation, Investor Risk Parameters,

Horizon and Duration Length

Panel A: Calibrated Optimal Portfolio Choice

Horizon Risk Cash% Stocks% Bonds% Bonds/Stocks
Tolerance
Conservative | 30.4 32.8 36.9 1.125
Short Moderate 15.3 57.6 27.1 0.47
Aggressive 7.2 72.5 20.3 0.28
Conservative | 16.1 52.1 31.8 0.61
Medium Moderate 11.3 65.2 23.5 0.36
Aggressive 3.1 84.9 12 0.14
Conservative | 11.4 53.3 35.3 0.66
Long Moderate 8.8 74.1 17.1 0.23
Aggressive 1.9 92.6 55 0.06

Panel B: Calibrated Investor’s Risk Parameters,
Horizon and Duration length

Parameter | Estimate Boundary
10.26 no

Attitude Teon =i -
toward risk Ymod '

Yaqg 1.62 no

Hpore 5.36 no
g‘:reiszt;‘l‘:“t H oot 11.68 no

Hlong 35.00 upper
Optimal D, 4.73 lower
Duration of D, ., 5.85 upper
Bonds Dy 5.85 lower
Optimal m, 1.71 upper
Duration of m, 0.58 lower
Bonds
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